
Codabench Wiki

Codabench Wiki PDF

Codabench Team

Apache-2.0

Table of contents

71. Home

71.1 Documentation

71.2 Useful links

82. Participants

82.1 Participating in a Competition

103. Organizers

103.1 Benchmark Creation

103.1.1 Getting Started Tutorial

113.1.2 Advanced Tutorial

293.1.3 How to Transition from Codalab to Codabench?

313.1.4 Competition Creation

323.1.5 Competition Creation Form

393.1.6 Competition Creation Bundle

403.1.7 Competition YAML Structure

433.1.8 YAML Structure

483.1.9 Competition Docker Image

493.1.10 Dataset Competition Creation and participate instruction

523.1.11 Leaderboard Features

543.1.12 Example Cancer Benchmarks

633.1.13 Public Tasks and Tasks Sharing

673.1.14 Detailed Results and Visualization

693.2 Running a Benchmarks

693.2.1 Benchmark Management & List Page

733.2.2 Competition Detail Tab Navigation

763.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

843.2.4 Update programs or data

873.2.5 Queue Management

903.2.6 Compute Worker Management & Setup

953.2.7 Compute Worker Management with Podman

983.2.8 Server Status

1004. Developers and Administrators

1004.1 Codabench Basic Installation Guide

1004.1.1 Pre-requisites

1004.1.2 Clone Repository

1004.1.3 Edit the settings (.env)

Table of contents

- 2/173 - Apache-2.0

1004.1.4 Start the service

1014.1.5 Run the following commands

1014.1.6 Advanced Configuration

1024.1.7 Troubleshooting

1024.1.8 Online Deployement

1034.2 How to Deploy a Server

1034.2.1 Overview

1034.2.2 Preliminary steps

1034.2.3 Modify .env file configuration

1044.2.4 Open Access Permissions for following port number

1044.2.5 Modify django-related configuration

1054.2.6 Start service

1064.2.7 Set public bucket policy to read/write

1064.2.8 Checkout the log of the specified container

1064.2.9 Stop service

1064.2.10 Disabling docker containers on production

1074.2.11 Link compute workers to default queue

1074.2.12 Personalize Main Banner

1084.2.13 Frequently asked questions (FAQs)

1114.2.14 Securing Codabench and Minio

1134.2.15 Workaround: MinIO and Django on the same machine with only the port 443 opened to the external network.

1144.3 Administrative Procedures

1144.3.1 Maintenance Mode

1144.3.2 Give superuser privileges to a user

1144.3.3 Migration

1144.3.4 Collect static files

1144.3.5 Delete POSTGRESDB and MINIO :

1154.3.6 Feature competitions in home page

1154.3.7 Shell Based Admin Features

1154.3.8 Django Admin interface

1174.3.9 RabbitMQ Management

1174.3.10 Flower Management

1174.3.11 Storage analytics

1184.3.12 Homepage counters

1184.3.13 User Quota management

1194.3.14 Codabench Statistics

1204.4 Codabench Docker Architecture

1204.4.1 Django

Table of contents

- 3/173 - Apache-2.0

1214.4.2 Caddy

1214.4.3 Postgres (Labeled DB in docker-compose)

1214.4.4 Compute Worker

1214.4.5 Site Worker

1214.4.6 Minio

1214.4.7 Create Buckets

1214.4.8 Builder

1224.4.9 Rabbit

1224.4.10 Flower

1224.4.11 Competition docker image

1234.5 Submission Docker Container Layout

1234.5.1 Site Worker

1234.5.2 Compute Worker

1234.5.3 Submission Container

1244.6 Backups - Automating Creation and Restoring

1244.6.1 Creating Backups

1244.6.2 Scheduling Automatic Backups

1244.6.3 Restoring From Backup

1264.7 Submission Process Overview

1274.7.1 Overview:

1284.8 Robot Submissions

1284.8.1 Pre-requisite

1294.8.2 Getting started

1374.8.3 Using the Scripts:

1434.9 Running Tests

1434.9.1 CircleCI

1434.9.2 Example competitions

1444.10 Automation

1444.10.1 What and Why

1444.10.2 Virtualenv

1444.10.3 Requirements

1444.10.4 Automate competition creation

1464.11 Manual Validation

1474.12 Validation and deplyement of pull requests

1474.12.1 1. Local testing and validation of the changes

1484.12.2 Update the test server

1494.12.3 Merge develop into master

1504.12.4 Update the production server

Table of contents

- 4/173 - Apache-2.0

1504.12.5 Creating a Release

1514.12.6 TODO

1524.13 Upgrading Codabench

1524.13.1 Index

1534.13.2 Upgrade RabbitMQ (version < 1.0.0)

1544.13.3 Create new logos for each competitions (version < 1.4.1)

1554.13.4 Worker docker image manual update (version < 1.3.1)

1564.13.5 Add line in .env file for default worker queue duration (version < 1.7.0)

1574.13.6 Uncomment a line in your .env file (version < 1.8.0)

1584.13.7 Rebuilding all docker images (version < 1.9.2)

1594.13.8 Move the latest storage_inconsistency files from the logs folder to var/logs (version < 1.12.0)

1604.13.9 Submissions and Participants count (version < 1.14.0)

1614.13.10 Homepage Counters (version < 1.15.0)

1624.13.11 User Removal (version < 1.17.0)

1634.13.12 Database size fix (version < 1.18.0)

1655. Newsletters Archive

1655.1 2024

1655.1.1 CodaLab in 2024

1655.1.2 Unprecedented engagement

1665.1.3 Introducing Codabench

1665.1.4 Spotlight on competitions

1675.1.5 What about the future?

1675.1.6 Community

1675.1.7 Last words

1696. How you can contribue

1696.1 Index

1706.2 Contributing

1706.2.1 Being a Codabench user

1706.2.2 Setting up a local instance of Codabench

1706.2.3 Setting up an autonomous Compute Worker on a machine

1717. FAQ

1717.1 General questions

1717.1.1 What is Codabench for?

1717.1.2 Can CodaLab competitions be privately hosted?

1717.1.3 How to change my username?

1717.1.4 How to make a task public or use public tasks from other users?

1717.1.5 How to delete my account?

Table of contents

- 5/173 - Apache-2.0

1717.2 Technical questions

1717.2.1 Server Setup Issues

1727.2.2 A library is missing in the docker environment. What do to?

1727.2.3 Emails are not showing up in my inbox for registration

1727.2.4 Robots and automated submissions?

1738. Contact Us

Table of contents

- 6/173 - Apache-2.0

1. Home

1.1 Documentation

Welcome to the Codabench wiki!

Codabench is a platform allowing you to flexibly specify a benchmark. First you define tasks, e.g. datasets and metrics of success, then you specify

the API for submissions of code (algorithms), add some documentation pages, and "CLICK!" your benchmark is created, ready to accept submissions

of new algorithms. Participant results get appended to an ever-growing leaderboard.

You may also create inverted benchmarks in which the role of datasets and algorithms are swapped. You specify reference algorithms and your

participants submit datasets.

Here are some links to get you started:

Getting Started with Codabench

Basic Installation Guide

Compute Worker Setup

Administrative Procedures

1.2 Useful links

Governance Document

Privacy and Terms of Use

About

Use the top bar or the search functionality to navigate the wiki!

1. Home

- 7/173 - Apache-2.0

https://github.com/codalab/codalab-competitions/wiki/Community-Governance
https://github.com/codalab/codalab-competitions/wiki/Privacy
https://github.com/codalab/codalab-competitions/wiki/Project_About_CodaLab

2. Participants

2.1 Participating in a Competition

Signing up and updating your settings

When you sign up, you will have to provide your name and a valid email.

Registering for a Benchmark

To make an entry in a benchmark click on the "My Submissions" tab, you will then be prompted to accept the rules to register to that benchmark.

When registering, a request may be sent to the benchmark organizer. You will be notified when the benchmark organizer has approved your

registration request. Follow the instructions of the organizers.

Making a Submission

Making a submission to a benchmark involves uploading a bundle (.zip archive) containing files with your answer, in the format that has been

specified by the benchmark organizer. There are two types of submissions: - Code submissions contain a metadata file specifying the command to

execute - Results submission contain the solution to the problem (no code executed on the platform)

To make a submission

Sign in to Codabench. If you do not have an account, you will need to create one.

Select the benchmark you want to work with.

Click the My Submissions tab. Here, you can access the data that has been provided by the benchmark organizer.

Click on the paper clip logo and select your zip file.

On this page, you can make new submissions, and see previous submissions for each phase in the competition.

1.

2.

3.

4.

2. Participants

- 8/173 - Apache-2.0

https://codabench.org/

You can also view all your submissions in the Resources Interface.

Viewing Benchmark Results

You can keep up with the progress of benchmarks you are participating in by clicking on the Results tab. This will display the leaderboard.

2.1 Participating in a Competition

- 9/173 - Apache-2.0

3. Organizers

3.1 Benchmark Creation

3.1.1 Getting Started Tutorial

Codabench is an upgraded version of the CodaLab Competitions platform, allowing you to create either competitions or benchmarks. A benchmark is

essentially an ever-lasting competition with multiple tasks, for which a participant can make multiple entries in the result table.

This getting started tutorial shows a simple example of how to create a competition. Advanced users should check fancier examples and the full

documentation. If you simply wish to participate in a benchmark or competition, go to Participating in a benchmark.

Getting ready

Create a Codabench account (if not done yet)

Download the sample competition bundle and the sample submission.

Do not unzip them.

Create a competition

From the front page of Codabench, in the top menu, go to the Benchmark > Management

Click the green Upload button at the top right.

Upload the (zipped) sample competition bundle => this will create your competition.

Make changes

Click on the Edit gray button at the top to enter the editor.

Make small changes

Change the logo in the Details tab to another png of jpg file.

Change the end date in the Phases tab: if the competition is terminated, you will not be able to make submissions.

Save your changes and verify that they have become effective.

Make a submission

In your competition page, go to the tab My submissions

Submit the (zipped) sample submission bundle you downloaded.

When your submission finishes, go to the Result tab to check if it shows up on the leaderboard.

Publish your competition

If you want to make your competition visible to all, you must publish it by checking the Publish box at the very bottom of the editor Details page.

After you publish your competition, it should now be visible when you are not logged in, at the URL of your competition page.

You are done with this simple tutorial. Next, check the more advanced tutorial.

You can also check out this blog post: How to create your first benchmark on Codabench.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

In some competitions, submissions successfully processed do not automatically get pushed to the leaderboard

•

•

3. Organizers

- 10/173 - Apache-2.0

https://codabench.org
https://codalab.lisn.fr/
https://github.com/codalab/competition-examples/tree/master/codabench
https://github.com/codalab/codabench/wiki
https://github.com/codalab/codabench/wiki
https://codabench.org
https://github.com/codalab/competition-examples/blob/master/codabench/wheat_seeds/code_submission_bundle.zip
https://github.com/codalab/competition-examples/blob/master/codabench/wheat_seeds/sample_code_submission.zip
https://codabench.org
https://medium.com/@adrienpavao/how-to-create-your-first-benchmark-on-codabench-910e2aee130c

3.1.2 Advanced Tutorial

Here is an advanced tutorial. If you are new to CodaBench, please refer to get started tutorial first. In this article, you'll learn how to use more

advanced features and how to create benchmarks using either the editor or bundles. Before proceeding to our tutorial, make sure you have registered

for an account on the Codabench website.

The image below is an overview of the benchmark creation process

Creating a Benchmark by Editor

In this chapter, I'll take you step by step through the Editor's approach to creating benchmark, including algorithm type and dataset type.

3.1.2 Advanced Tutorial

- 11/173 - Apache-2.0

https://www.codabench.org/

STEP 1: CLICK ON MANAGEMENT IN THE TOP RIGHT CORNER OF CODABENCH'S HOME PAGE UNDER COMPETITIONS.

When you click on it, you will see the screen as shown in the screenshot below.

STEP 2: CLICK ON THE CREATE BUTTON IN THE TOP RIGHT CORNER OF COMPETITION MANAGEMENT.

3.1.2 Advanced Tutorial

- 12/173 - Apache-2.0

STEP 3: FILL IN THE DETAILS TAB CONTENT.

STEP 4: FILL IN THE PARTICIPANT TAB.

3.1.2 Advanced Tutorial

- 13/173 - Apache-2.0

STEP 5: FILL IN THE PAGES TAB.

STEP 6: FILL IN THE PHASES TAB.

3.1.2 Advanced Tutorial

- 14/173 - Apache-2.0

When you click on the Manage Tasks/Datasets button, you will see the screenshot shown below

Click the Add Dataset button in the diagram to upload the resource files needed to create the competition.

Creating a phase will require a bundle of the following types (.zip format), I'll give you more details on how to write these bundle later.

Now you just need to have this concept in your mind

3.1.2 Advanced Tutorial

- 15/173 - Apache-2.0

Here are the screenshots of the 5 types of bundles after they were uploaded

3.1.2 Advanced Tutorial

- 16/173 - Apache-2.0

3.1.2 Advanced Tutorial

- 17/173 - Apache-2.0

STEP 7: FILL IN THE LEADERBOARD TAB.

3.1.2 Advanced Tutorial

- 18/173 - Apache-2.0

STEP 8: SAVE AND PUBLISH THE BENCHMARK

3.1.2 Advanced Tutorial

- 19/173 - Apache-2.0

Creating a Benchmark by Bundle

Creating a benchmark through bundles is a much more efficient way than using editors.

SIMPLE VERSION EXAMPLE: CLASSIFY WHEAT SEEDS

STEP 1: DOWNLOAD BUNDLE

https://github.com/codalab/competition-examples/blob/master/codabench/wheat_seeds/code_submission_bundle.zip

Click on the link above to download the bundle in the screenshot.

3.1.2 Advanced Tutorial

- 20/173 - Apache-2.0

STEP 2: GO TO THE BENCHMARK UPLOAD PAGE

STEP 3: UPLOAD THE BUNDLE

After the bundle has been uploaded, you will see the screenshot shown below.

3.1.2 Advanced Tutorial

- 21/173 - Apache-2.0

STEP 4: VIEW YOUR NEW BENCHMARK

3.1.2 Advanced Tutorial

- 22/173 - Apache-2.0

Benchmark Examples

Example bundles for code & dataset competition can be found here:

https://github.com/codalab/competition-examples/tree/master/codabench

IRIS

Iris Codabench Bundle is a simple benchmark involving two phases, code submission and results submission.

AUTOWSL

Two versions of the Automated Weakly Supervised Learning Benchmark: - Code submission benchmark - Dataset submission benchmark

MINI-AUTOML

Mini-AutoML Bundle is a benchmark template for Codabench, featuring code submission to multiple datasets (tasks).

3.1.2 Advanced Tutorial

- 23/173 - Apache-2.0

https://github.com/codalab/competition-examples/tree/master/codabench/iris
https://github.com/codalab/competition-examples/tree/master/codabench/autowsl
https://github.com/codalab/competition-examples/tree/master/codabench/autowsl/code_submission
https://github.com/codalab/competition-examples/tree/master/codabench/autowsl/dataset_submission
https://github.com/codalab/competition-examples/tree/master/codabench/mini-automl

How do I set up submission comments for multiple submissions?

STEPS

Step 1: Click the edit button

Step 2: Enable multiple submissions on leaderboard

3.1.2 Advanced Tutorial

- 24/173 - Apache-2.0

3.1.2 Advanced Tutorial

- 25/173 - Apache-2.0

Step 3: Set up submission comment

Step 4: Save all changes

3.1.2 Advanced Tutorial

- 26/173 - Apache-2.0

Step 5: Leave a comment before making submission

3.1.2 Advanced Tutorial

- 27/173 - Apache-2.0

Step 6: Check out the leaderboard

3.1.2 Advanced Tutorial

- 28/173 - Apache-2.0

3.1.3 How to Transition from Codalab to Codabench?

Codabench serves as a modern, faster, and more reliable upgrade to CodaLab, designed to supersede it. This quick guide is meant for CodaLab users

wondering how to successfully adopt this new challenge platform.

What’s new in Codabench?

Codabench includes all features from CodaLab Competitions, and proposes a faster and more intuitive interface. It also has new features such as:

Live logs during submission processes

Storage quotas

Computation servers management for all users.

It also emphasizes on benchmarking, allowing dataset submissions and multiple leaderboard rows per user. Finally, future project development and

maintenance will be focused on Codabench.

Do I need to create a new account?

Yes, even if you previously had a CodaLab account, you need to create a new account on Codabench. Sign up is quick and free. From there, as a

competition participant, you are all set.

The next questions concern competition organizers.

Can I upload my old competition bundles to Codabench?

Yes! That is the good news: competition bundles are back-compatible. This means that you can upload your CodaLab competition bundles into

Codabench without any modifications and have them working just fine.

Simply go to “Benchmarks > Management”, then click on “Upload” and select your competition bundle.

Go to “Benchmarks > Management”.

•

•

•

3.1.3 How to Transition from Codalab to Codabench?

- 29/173 - Apache-2.0

https://codabench.org/
https://codalab.lisn.fr/
https://codabench.org/
https://codalab.lisn.fr/
https://www.codabench.org/accounts/signup

Click on “Upload” and select your competition bundle.

That’s it! Your competition is ready to receive submissions.

How to move a competition from CodaLab to Codabench?

If you competitition is already live on CodaLab, that is fine too. You simply need to create a dump, download it and re-upload it on Codabench.

Go to “Dumps” organizer interface.

Click on “Create Dump” then “Download”. You’ll obtain a competition bundle that you’ll be able to re-upload on Codabench, following the instructions of

the previous section.

How to create a competition from scratch on Codabench?

If you don’t have any previous competition, and want to learn how to create one from scratch, please refer to the Getting started guide.

Concluding remarks

Codabench, the new version of the competition and benchmark platform CodaLab, was launched on August 2023 and is already receiving great

attention. For users accustomed to CodaLab, the transition to Codabench is quick and easy. Indeed, competition bundles are back-compatible, and all

that is required is to create an account on Codabench. To go further, you can refer to Codabench’s Wiki.

Leaderboard results won’t be transferred. For that, you’ll need to re-submit the submissions.

3.1.3 How to Transition from Codalab to Codabench?

- 30/173 - Apache-2.0

https://wiki.codabench.org

3.1.4 Competition Creation

Competition creation can be done two ways. Through the online form on Codalab, or by uploading a competition bundle to Codalab.

Bundle Upload

For more information on Bundle Upload see here:

Competition Creation: Bundle

For more information on Competition Bundle Structure, see here:

Competition Bundle Structure

GUI creation

For more information on GUI creation see here:

Competition Creation: Form

3.1.4 Competition Creation

- 31/173 - Apache-2.0

https://github.com/codalab/competitions-v2/wiki/Competition-Creation:-Bundle
https://github.com/codalab/competitions-v2/wiki/Competition-Bundle-Structure
https://github.com/codalab/competitions-v2/wiki/Competition-Creation:-Form

3.1.5 Competition Creation Form

Competitions can now be created through a wizard/form. This page will cover each different tab of the competition form correlating to a section, and

the fields for each section.

Details

The details tab covers all basic competition info, such as title, logo, description, and the queue used.

Title: The title of your competition.

Logo: The logo corresponding to your competition

Description: The description of your competition

Queue: If you've previously created a queue through queue management, you can assign it to your competition here.

Participation

The participation tab covers your terms and conditions for the competition, and settings for auto-approval of participants.

•

•

•

•

3.1.5 Competition Creation Form

- 32/173 - Apache-2.0

Terms: Your terms and conditions for the competition.

Auto Approve Registration: If checked, the organizer is not required to approve new participants.

Pages

In the pages section, you can add any additional content you would like to display to competition participants as pages . (Tabs on the competition

detail page).

•

•

3.1.5 Competition Creation Form

- 33/173 - Apache-2.0

Clicking Add page should present you a modal with the following layout:

Title: The title of the page you are adding

Content: The content of your page formatted as Markdown.

Phases

The phases section allows you to define your phases and their attached tasks.

•

•

3.1.5 Competition Creation Form

- 34/173 - Apache-2.0

By clicking Add phase , you should be presented with a modal for phase creation:

Name: The name of your phase

Start: The start day of your phase

End: The end day of your phase

Tasks: Here you can assign one or multiple task objects to your phase. Tasks are problems that the submission should be solving. For more

information, see the explanation on competition structure here: If you don't have any tasks created yet, click the green button at the bottom of the

new phase modal titled Manage Tasks/Datasets

Description: The description of your phase

Advanced

Execution Time Limit: The time limit for submission execution time measured in seconds (Currently the label says this is measured in MS, but this

seems to be false)

Max submissions per day: The max submissions allowed for the phase. The time period is from midnight UTC to midnight the next day UTC.

Max submissions per person: The absolute max amount of submissions a participant can make on this phase.

Leaderboards

The leaderboards section allows you to define leaderboards which determine how submissions are scored.

•

•

•

•

•

•

•

•

3.1.5 Competition Creation Form

- 35/173 - Apache-2.0

Clicking add leaderboard should bring up this modal:

Title: The title of your leaderboard

Key: A unique name to refer to this leaderboard by (Preferably lowercase)

Adding a column will add some fields for the values of the column:

•

•

3.1.5 Competition Creation Form

- 36/173 - Apache-2.0

Title (Unlabeled top input): The title of your column

Primary Column: Whether this is the main column in the leaderboard (I.E: Is the sum/average of other columns)

Computation (None/Average): If average is selected, this column should not have a score submitted to it, and will be a computation of the average

of all the other columns.

Sorting: Determine which way scores are sorted for this column.

Column Key: A unique key to refer to this column by.

Collaborators

Here you can add other users to your competition as administrators.

As per the other pages, clicking Add collaborator should bring up a modal. The search text can be the user's email if you know it, or their

username.

•

•

•

•

•

3.1.5 Competition Creation Form

- 37/173 - Apache-2.0

3.1.5 Competition Creation Form

- 38/173 - Apache-2.0

3.1.6 Competition Creation Bundle

This page is relatively simple. It's where you submit a completed competition bundle to Codabench, in order for it to be processed into a competition

instance. For more information on competition bundles, see this link here: Competition Bundle Structure.

To begin, just click the paper clip icon, or the bar next to it. It should open a file select dialogue. From here, you select your competition bundle, and

click upload. Once Codabench is done processing and unpacking your competition, you should be greeted with a success message and a link to your

new competition.

Backward compatibility

If you previously used CodaLab Competitions, note that Codabench is compatible with CodaLab bundles.

3.1.6 Competition Creation Bundle

- 39/173 - Apache-2.0

https://github.com/codalab/competitions-v2/wiki/Competition-Bundle-Structure
https://github.com/codalab/codalab-competitions

3.1.7 Competition YAML Structure

A competition bundle is simply a zip file containing the competition.yaml which defines different aspects and attributes of your competition such

as the logo, the html/markdown pages documenting your competition, and the data associated with your competition.

What is a Competition?

A competition is composed of a phase or many phases defining the active times of the competition, along with some other settings such as

execution time limit. Each phase can have one or more tasks.

A task is the problem the submission should be solving, therefore submissions that solve a task can be thought of as a solution. A task consists of

reference data, input data, scoring program, and an ingestion program.

For starting kits in v2, they should be solutions included with the competition bundle. See the example competiton.yaml or the section Competition

YAML below for a link with more info. For more information on the different types of data, see the lower section of this page.

Example Competition Bundle Layout:

Some competition bundle examples!

Files can be under a directory, they just have to be referenced by their full path in the YAML. See the Competition YAML section below.

Example competition.yaml:

Note

--\ example_competition.zip
 |
 |- competition.yaml
 |- logo.png
 |- example_reference_data.zip
 |- example_scoring_program.zip
 |- example_solution.zip
 |- overview.md
 |- evaluation.md
 |- terms_and_conditions.md
 |- data.md

competition.yaml

title: Example Competition Submit Scores
description: An example competition where submissions should output the score they want
image: logo.jpg
terms: terms.md
pages:

- title: overview
file: overview.md

- title: evaluation
file: evaluation.md

- title: terms
file: terms_and_conditions.md

- title: data
file: data.md

phases:
- index: 0

name: First phase
description: An example phase
start: 2018-03-01
end: 2027-03-01
tasks:

- 0
tasks:

- index: 0
name: First Phase Task
description: Task for the first phase
scoring_program: example_scoring_program.zip
reference_data: example_reference_data.zip

solutions:
- index: 0

path: example_solution.zip
tasks:

- 0

3.1.7 Competition YAML Structure

- 40/173 - Apache-2.0

https://github.com/codalab/competition-examples/tree/master/codabench

Competition YAML

The competition.yaml file is the most important file in the bundle. It's what Codabench looks for to figure out the structure and layout of your

competition, along with additional details. For more information on setting up a competition.yaml see the wiki page here: Competition YAML

Data Types And Their Role:

REFERENCE DATA:

Reference data is typically the truth data that your participant's predictions are compared against.

SCORING PROGRAM

The scoring program is the file that gets ran to determine the scores of the submission, typically either based on the submission's prediction outputs,

or the results from the submission itself when compared with the reference data. Usually this should be a script like a python file, but it can generally

be anything.

This is also paired with a metadata.yaml file with a key command that correlates to the command used to run your scoring program. There are also

special directories available for use.

Example: Here's what a metadata.yaml might look like:

This specifies that python3 is going to run the scoring program (which is going to be located in /app/program/scoring.py). It also gives, as args : -

The input folder, which contains either the user's own results or predictions from ingestion - The output folder where the score is placed.

The arguments are optional, but passing them may be more convenient.

The scoring program outputs a scores.json file containing the results for each column of the leaderboard. After computing a submission, this file

should look like something like this:

The keys should match the leaderboard columns keys defined in the competition.yaml file.

The scoring program can also output detailed results as an HTML file for each submission. Click here for more information.

INGESTION PROGRAM

The ingestion program is a file that gets ran to generate the predictions from the submissions if necessary. This is usually a python script or a script

in another language, but it can generally be anything.

The ingestion program is also paired with a metadata.yaml that specifies how to run it. It should have a key command that is the command used to

run your ingestion program. The same special directories should be available to your ingestion program.

Example: Here's what an ingestion metdata.yaml might look like this:

Just like the example above, this specifies we're using python to run our ingestion program. Please note that it is not necessary to pass these

directories as arguments to the programs, but it can be convenient. More information about the folder layout here.

leaderboard:
- title: Results

key: main
columns:

- title: score
key: score
index: 0
sorting: desc

metadata.yaml

command: python3 /app/program/scoring.py /app/input/ /app/output/

scores.json

{"accuracy": 0.886, "duration": 42.4}

metadata.yaml

command: python3 /app/program/ingestion.py /app/input_data/ /app/output/ /app/program /app/ingested_program

3.1.7 Competition YAML Structure

- 41/173 - Apache-2.0

https://github.com/codalab/competitions-v2/wiki/Yaml-Structure

INPUT DATA

This is usually the test data used to generate predictions from a user's code submission when paired with an ingestion program.

3.1.7 Competition YAML Structure

- 42/173 - Apache-2.0

3.1.8 YAML Structure

This page describes all the attributes in the Codabench competition definition language, using YAML. This is used to create configuration files in

Codabench competition bundles.

Iris competition YAML file example!

Versioning

A version for the YAML is required as this platform can support multiple versions of a competition.yaml file. For examples of v1.5 bundles, look

here.

For all v2 style competition bundles, be sure to add version: 2 to the top of the competition.yml file.

Note: Not all features of v1.5 competitions are currently supported in v2.

Competition Properties

REQUIRED

title: Title of the competition

image: File path of competition logo, relative to competition.yaml

terms: File path to a markdown or HTML page containing the terms of participation participants must agree to before joining a competition

OPTIONAL

description: A brief description of the competition.

registration_auto_approve: True/False. If True, participation requests will not require manual approval by competition administrators. Defaults to

False

docker_image: Can specify a specific docker image for the competition to use. Defaults to codalab/codalab-legacy:py3 . More information here.

make_programs_available: Can specify whether to share the ingestion and scoring program with participants or not. Always available to

competition organizer.

make_input_data_available: Can specify whether to share the input data with participants or not. Always available to competition organizer.

queue: Queue submissions are sent to. Can be used to specify competition specific compute workers. Defaults to the standard queue shared by all

competitions. The queue should be referenced by its Vhost, not by its name. You can find the Vhost in Queue Management by clicking the eye

button View Queue Detail .

enable_detailed_results: True/False. If True, competition will watch for a detailed_results.html file and send its contents to storage. More

information here.

show_detailed_results_in_submission_panel: a boolean (default: True) If set to True , participants can see detailed results in the submission

panel

show_detailed_results_in_leaderboard: a boolean (default: True) If set to True , participants can see detailed results in the leaderboard

contact_email: a valid contact email to reach the organizers.

reward: a string to show the reward of the competition e.g. "$1000" for competition.

auto_run_submissions: a boolean (default: True) if set to False , organizers have to manually run the submissions of each participant

can_participants_make_submissions_public: a boolean (default: True) if set to False , participants cannot make their submissions public from

submissions panel.

forum_enabled: a boolean (default: True) if set to False , organizers and participants cannot see or interact with competition forum.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Required
version: 2
title: Compute Pi
image: images/pi.png
terms: pages/terms.md

Optional
description: Calculate pi to as many digits as possible, as quick as you can.
registration_auto_approve: True

3.1.8 YAML Structure

- 43/173 - Apache-2.0

https://yaml.org
https://github.com/codalab/competition-examples/blob/master/codabench/iris/competition.yaml
https://github.com/codalab/codalab-competitions/wiki/Organizer_Codalab-competition-YAML-definition-language

Pages

REQUIRED

title: String that will be displayed in the competition detail page as the title of the page

file: File path to a markdown or HTML page relative to competition.yaml containing the desired content of the page.

Phases

REQUIRED

name: Name of the phase

start: Datetime string for the start of the competition. ISO format strings are recommended. Use YYYY-MM-DD HH:MM:SS date-time format.

(Example date-time: 2024-12-31 14:30:00)

end: Datetime string for the end of the phase (optional for last phase only. If not supplied for the final phase, that phase continues indefinitely). Use

YYYY-MM-DD HH:MM:SS date-time format. (Example date-time: 2024-12-31 14:30:00)

tasks: An array of numbers pointing to the index of any defined tasks relevant to this phase (see tasks for more information)

OPTIONAL

index: Integer for noting the order of phases, Phases must be sequential, without any overlap. If indexes are not supplied, ordering will be assumed

by declaration order.

max_submissions: Total submissions allowed per participant for the entire phase

max_submissions_per_day: Submission limit for each participant for a given day

auto_migrate_to_this_phase: Cannot be set on the first phase of the competition. This will re-submit all successful submissions from the previous

phase to this phase at the time the phase starts.

execution_time_limit: Execution time limit for submissions, given in seconds. Default is 600.

hide_output: True/False. If True, stdout/stderr for all submissions to this phase will be hidden from users who are not competition administrators

or collaborators.

hide_prediction_output: True/False. If True, participants won't be able to download the "Output from prediction step".

hide_score_output: True/False. If True, participants won't be able to download the "Output from scoring step" containing the scores.txt file.

starting_kit: path to the starting kit, a folder that participants will be able to download. Put there any useful files to help participants (example

submissions, notebooks, documentation).

public_data: path to public data, that participants will be able to download.

accepts_only_result_submissions(default=False): When set to True, the phase is expected to accept only result submissions.

docker_image: codalab/codalab-legacy:py37 # default docker image
make_programs_available: True
make_input_data_available: False
enable_detailed_results: True
show_detailed_results_in_submission_panel: True
show_detailed_results_in_leaderboard: True
contact_email: organizer_email@example.com
reward: $1000 prize pool
auto_run_submissions: True
can_participants_make_submissions_public: False
forum_enabled: True

•

•

pages:
- title: Welcome

file: welcome.md
- title: Getting started

file: pages/getting_started.html

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

phases:
- index: 0

name: Development Phase
description: Tune your models
start: 2019-12-12 13:30:00 # Time in UTC+0 and 24-hour format
end: 2020-02-01 00:00:00 # Time in UTC+0 and 24-hour format
execution_time_limit: 1200
starting_kit: starting_kit
public_data: public_data
accepts_only_result_submissions: True

3.1.8 YAML Structure

- 44/173 - Apache-2.0

Tasks

REQUIRED

index: Number used for internal reference of the task, pointed to by solutions (below) and phases (above)

name: Name of the Task

scoring_program: File path relative to competition.yaml pointing to a .zip file or an unzipped directory, containing the scoring program

OR

key: UUID of a task already in the database. If key is provided, all fields other than index will be ignored

OPTIONAL

description: Brief description of the task

input_data: File path to the data to be provided during the prediction step

reference_data: File path to the data to be provided to the scoring program

ingestion_program: File path to the ingestion program files

ingestion_only_during_scoring: True/False. If true, the ingestion program will be run in parallel with the scoring program, and can communicate w/

the scoring program via a shared directory

Solutions

REQUIRED

index: Index number of solution

tasks: Array of the tasks (referenced internally) for which this solution applies.

path: File path to .zip or directory containing the solution data.

tasks:
- 0

- index: 1
name: Final Phase
description: Final testing of your models
start: 2020-02-02 00:00:00 # Time in UTC+0 and 24-hour format
auto_migrate_to_this_phase: True
accepts_only_result_submissions: False
tasks:

- 1

•

•

•

•

•

•

•

•

•

tasks:
- index: 0

name: Compute Pi Developement Task
description: Compute Pi, focusing on accuracy
input_data: dev_phase/input_data/
reference_data: dev_phase/reference_data/
ingestion_program: ingestion_program.zip
scoring_program: scoring_program.zip

- index: 1
name: Compute Pi Final Task
description: Compute Pi, speed and accuracy matter
input_data: final_phase/input_data/
reference_data: final_phase/reference_data/
ingestion_program: ingestion_program.zip
scoring_program: scoring_program.zip

•

•

•

solutions:
- index: 0

path: solutions/solution1.zip
tasks:
- 0
- 1

- index: 1
path: solutions/solution2/
tasks:
- 0

3.1.8 YAML Structure

- 45/173 - Apache-2.0

Fact Sheet

OPTIONAL

JSON for asking metadata questions about each submission when they are submitted - KEY: Programmatic name for a response. Should not contain

any whitespace. - QUESTION TYPE: - "checkbox": Prompts the user with a checkbox for a yes/no or true/false type question - Required SELECTION:

[true, false] - "text":: Prompts the user with a text box to write a response. - Required SELECTION: "" - "is_required": "false" will allow the user not

to submit a response. Otherwise, the user will have to type something. - "select": Gives the user a dropdown to select a value from. - SELECTION: Give

an array of comma separated values that the user can select from: ["Value1","Value2","Value3",...,"ValueN"] - TIP: If you want this selection to be

optional you can add "" as an option. ex. ["", "Value1", ...] and set "is_required": "false" - is_on_leaderboard: setting this to "true" will show this

response on the leaderboard along with their submission.

STRUCTURE

Leaderboards

LEADERBOARD DETAILS

REQUIRED

title: Title of leaderboard

key: Key for scoring program to write to

columns: An array of columns (see column layout below)

OPTIONAL

submission_rule: "Add", "Add_And_Delete", "Add_And_Delete_Multiple", "Force_Last", "Force_Latest_Multiple" or "Force_Best". It sets the behavior of

the leaderboard regarding new submissions. See Leaderboard Functionality for more details.

hidden: True/False. If True, the contents of this leaderboard will be hidden to all users who are not competition administrators or collaborators.

fact_sheet: {
"[KEY]": {

"key": "[KEY]",
"type": "[QUESTION TYPE]",
"title": "[DISPLAY NAME]",
"selection": [SELECTION],
"is_required": ["true" OR "false"],
"is_on_leaderboard": ["true" OR "false"]

}

fact_sheet: {
"bool_question": {

"key": "bool_question",
"type": "checkbox",
"title": "boolean",
"selection": [True, False],
"is_required": "false",
"is_on_leaderboard": "false"

},
"text_question": {

"key": "text_question",
"type": "text",
"title": "text",
"selection": "",
"is_required": "false",
"is_on_leaderboard": "false"

},
"text_required": {

"key": "text_required",
"type": "text",
"title": "text",
"selection": "",
"is_required": "true",
"is_on_leaderboard": "false"

},
"selection": {

"key": "selection",
"type": "select",
"title": "selection",
"selection": ["", "v1", "v2", "v3"],
"is_required": "false",
"is_on_leaderboard": "true"

}
}

•

•

•

•

•

3.1.8 YAML Structure

- 46/173 - Apache-2.0

Column Details

REQUIRED

title: Title of the column

key: Key for the scoring program to write to. The keys must match the keys of the scores.json file returned by the scoring program, as explained

with more details here.

index: Number specifying the order the column should show up on the leaderboard

OPTIONAL

sorting: sorting order for the column: Descending (desc) or Ascending (asc)

Ascending: smaller scores are better

Descending: larger scores are better

computation: computation to be applied must be accompanied by computation indexes

computation options: sum, avg, min, max

computation_indexes: an array of indexes of the columns the computation should be applied to

precision: (integer, default=2) to round the score to precision number of digits

hidden: (boolean, default=False) to hide/unhide a column on leaderboard

•

•

•

•

•

•

•

•

•

•

•

leaderboards:
- title: Results

key: main
submission_rule: "Force_Last"
columns:

- title: Accuracy Score 1
key: accuracy_1
index: 0
sorting: desc
precision: 2
hidden: False

- title: Accuracy Score 2
key: accuracy_2
index: 1
sorting: desc
precision: 3
hidden: False

- title: Max Accuracy
key: max_accuracy
index: 2
sorting: desc
computation: max
precision: 3
hidden: False
computation_indexes:

- 0
- 1

- title: Duration
key: duration
index: 3
sorting: asc
precision: 2
hidden: False

3.1.8 YAML Structure

- 47/173 - Apache-2.0

3.1.9 Competition Docker Image

The competition docker image defines the docker environment in which the submissions of the competitions or benchmarks are run. Each

competition can have a different docker environment, referred by its DockerHub name and tag.

Default competition docker image

The default competition docker image is codalab/codalab-legacy:py37 . More information here: https://github.com/codalab/codalab-dockers

Set up another image

You can select another docker image:

In the competition.yaml file, using docker_image: username/image:tag

In the editor field "Competition Docker image" as shown in the following screenshot:

Building an image

If the default image does not suit your needs (missing libraries, etc.), you can either:

Select an existing image from DockerHub

Create your own image from scratch

Create a custom image based on the Codalab image. (more information below)

If you wish to create a custom image based on the Codalab image, you can follow the steps below:

1) Install Docker

2) Sign up to DockerHub

3) docker run -itd -u root codalab/codalab-legacy:py39 /bin/bash

4) Use docker ps to find running container id

5) Now run docker exec -it -u root <CONTAINER ID> bash

6) Install anything you want at the docker container shell (apt-get install , pip install , etc.)

7) Exit the shell with exit

8) docker commit <CONTAINER ID> username/image:tag

9) docker login

10) docker push username/image:tag

•

•

•

•

•

3.1.9 Competition Docker Image

- 48/173 - Apache-2.0

https://hub.docker.com/

3.1.10 Dataset Competition Creation and participate instruction

This page focuses on how to create a dataset contest via bundle and make submission for dataset competition

Overall process

The brief process can be summarized in the following diagram

There are two main parts: - the contest organizer creates the dataset competition by uploading a bundle (For more information on how to create a

contest via bundle, and the definition of bundle, you can refer to this link Competition-Creation:-Bundle)

Competition participant submission dataset

Differences from the code submission competition

FOR THE COMPETITION CREATOR

The main difference is the definition of the bundle, which differs from the code commit bundle in 2 ways

•

3.1.10 Dataset Competition Creation and participate instruction

- 49/173 - Apache-2.0

https://github.com/codalab/competitions-v2/wiki/Competition-Creation:-Bundle

Input data

- In the code submission, input data folder is filled with the dataset files

In the dataset submission, input data folder is filled with the sample code submission files(NB: the sample code submission file is the algorithm

file to be submitted by the participants in the code submission.)

Ingestion program

- Unlike the code submission, we need to switch the position of the variables $input and $submission_program - In a dataset submission competition,

the contents of $submission_program is the dataset submitted by the participant, and the contents of $input is the competition creator's built-in

sample code submission.

•

3.1.10 Dataset Competition Creation and participate instruction

- 50/173 - Apache-2.0

For the competition participant

- The left-hand side of the image above shows the contents of the documents that competition participants need to prepare for the code submission

competition

the right-hand side of the image above shows the contents of the documents that competition participants need to prepare for the dataset

submission competition

The competition creator needs to define the bundle by specifying the content of the dataset file to be uploaded

For example, the right-hand side of the picture shows the contents of the dataset file required for the HADACA competition to run.

Therefore, when competition participants upload their dataset submission, the zip file must contain all the files shown on the right side of the

picture above.

•

•

•

•

3.1.10 Dataset Competition Creation and participate instruction

- 51/173 - Apache-2.0

3.1.11 Leaderboard Features

For specific information on leaderboard and column fields, see the explanations in the YAML structure.

Writing scores

A leaderboard and column are written to via their keys. A leaderboard declaration like so

would require, via the scoring program, the following scores.json file

This is the end result shown on the leaderboard:

Computation

Scores should not be written to computation columns, instead they will be calculated by the platform at the time scores are read from scores.json .

Computation options are: - sum - avg - min - max

These are applied across the columns specified as computation_indexes .

So in the example above, the computation option specified is max and the indexes are 0 and 1, meaning we will take the max score of columns at

index 0 and 1 (i.e: .5 and .75) so .75 is returned in the computation.

Primary columns

Ranking is determined first by the primary column of the leaderboard. In the competition.yaml , this is the column at index 0. This option can be

changed in the competition editor. After sorting scores by the primary column (asc or desc as specified on the column) sorting then continues from

left to right. Final sorting is done by the submitted_at timestamp, so that if submissions have identical scores (as in the case of baselines), the

earlier submissions will be ranked higher.

Example (with Max Accuracy set as the primary column):

leaderboard:
- title: Results

key: main
submission_rule: "Force_Last"
columns:

- title: Accuracy Score 1
key: accuracy_1
index: 0
sorting: desc

- title: Accuracy Score 2
key: accuracy_2
index: 1
sorting: desc

- title: Max Accuracy
key: max_accuracy
index: 2
sorting: desc
computation: max
computation_indexes:

- 0
- 1

- title: Duration
key: duration
index: 3
sorting: asc

scores.json

{"accuracy_1": 0.5, "accuracy_2": 0.75, "duration": 123.45}

Accuracy Score 1	Accuracy Score 2	Max Accuracy	Duration
0.5	0.75	0.75	123.45

Rank	Accuracy Score 1	Accuracy Score 2	Max Accuracy	Duration
1	0.5	0.75	0.75	123.45
2	0.43	0.75	0.75	123.45

3.1.11 Leaderboard Features

- 52/173 - Apache-2.0

So we sort the submissions by the primary column, (Max Accuracy) and then by columns from left to right, so accuracy 1, then accuracy 2, then

duration, then by submission_at.

Submission rules

The submission rule set the behavior of the leaderboard regarding new submissions. Submissions can be forced to the leaderboard or manually

selected, can be unique or multiple on the leaderboard, etc.

Add: Only allow adding one submission

Add And Delete: Allow users to add a single submission and remove that submission

Add And Delete Multiple: Allow users to add multiple submissions and remove those submissions

Force Last: Force only the last submission

Force Latest Multiple: Force latest submission to be added to leaderboard (multiple)

Force Best: Force only the best submission to the leaderboard

Here are the corresponding values for the YAML field submission_rule : "Add", "Add_And_Delete", "Add_And_Delete_Multiple", "Force_Last",

"Force_Latest_Multiple" or "Force_Best".

Hidden Leaderboard

If a leaderboard is marked as hidden, it will not be visible to participants in the competition. It will only be visible to platform administrators,

competition administrators, and competition collaborators.

Downloading Leaderboard Data

If an administrator, competition administrator, and competition collaborator would like to download the current leaderboard data, they will have

access to a button labeled "CSV" on the leaderboard page. This creates a downloadable ZIP file. Each CSV file inside will be titled with the name of

the leaderboard. The first row of the CSV is the title for each column, followed by all the submissions on the leaderboard. This can be access directly

through the API by sending a GET request to [HOSTNAME]/api/competitions/'ID'/get_csv where 'ID' is the competition ID.

| 3 | 0.6 | 0.6 | 0.6 | 100 | # submitted at Jan 1, 2020
| 4 | 0.6 | 0.6 | 0.6 | 100 | # submitted at Jan 2, 2020

•

•

•

•

•

•

3.1.11 Leaderboard Features

- 53/173 - Apache-2.0

3.1.12 Example Cancer Benchmarks

This is our use case of cancer benchmarks. This document focuses on how to run the following three bundles in Codabench

CODABENCH CANCER HETEROGENEITY DT#1 TRANSCRIPTOME PANCREAS

CODABENCH CANCER HETEROGENEITY DT#2 METHYLOME PANCREAS

CODABENCH CANCER HETEROGENEITY DT#3 IMMUNE CELL TYPES

Steps

1. DECOMPRESSING THE ORIGINAL BUNDLE

Unzip the bundle from its original zip file format into a folder.

2. DECOMPRESSING INGESTION_PROGRAM_1.ZIP

3. MODIFY THE SUB_INGESTION.R FILE IN THE INGESTION_PROGRAM_1 FOLDER.

Add lines 19 and 20 of code, and replace the underlined variable in line 25 with submission_program_dir

Two new lines of code have been added to allow the v2 compute worker to find the user-submitted program (program.R). (Because the v2 compute

worker does not support searching for user-submitted code in subfolders.)

•

•

•

child_dir <- list.files(path=submission_program)
submission_program_dir <- paste0(submission_program, .Platform$file.sep, tail(child_dir, n=1))

// read code submitted by the participants :
.tempEnv <- new.env()
source(

file = paste0(submission_program_dir, .Platform$file.sep, "program.R")
, local = .tempEnv

)

3.1.12 Example Cancer Benchmarks

- 54/173 - Apache-2.0

4.SAVE THE CHANGES AND RE-ZIP THE INGESTION_PROGRAM_1 FOLDER.

Open the command line and go to the ingestion_program_1 folder.

Use the following command to package the modified folder as a zip file zip -r ingestion_program_1.zip *

3.1.12 Example Cancer Benchmarks

- 55/173 - Apache-2.0

Replace the latest compressed ingestion_program_1.zip file with the previous ingestion_program_1.zip file, and delete the ingestion_program_1

folder.

5. RECOMPRESS THE MODIFIED ORIGINAL BUNDLE.

Go to the directory at the same level as competition.yaml and execute the following command to compress the file zip -r

Codabench_cancer_heterogeneity_DT#2.zip *

3.1.12 Example Cancer Benchmarks

- 56/173 - Apache-2.0

6. CREATING COMPETITION WITH COMPRESSED BUNDLES

7. MODIFY THE DEFAULT EXECUTION TIME

The default execution time is 10 minutes, but since these three bundles are time-consuming to execute, you have to turn it up.

3.1.12 Example Cancer Benchmarks

- 57/173 - Apache-2.0

3.1.12 Example Cancer Benchmarks

- 58/173 - Apache-2.0

We recommend that you adjust the time to the maximum value of 2147483647 , so that the task will not time out and be forced to terminate by the

compute worker.

Summary

This paragraph summarizes the results of the execution of three bundles in codalab v2.

CODABENCH CANCER HETEROGENEITY DT#1 TRANSCRIPTOME PANCREAS

https://www.codabench.org/competitions/147/

All three submissions were successful.

3.1.12 Example Cancer Benchmarks

- 59/173 - Apache-2.0

https://www.codabench.org/competitions/147/

CODABENCH CANCER HETEROGENEITY DT#2 METHYLOME PANCREAS

https://www.codabench.org/competitions/174/

Two Submissions were successfully run, while the third failed due to insufficient execution time (We have now adjusted from the original 10,000

minute execution time limit to a maximum of 2,147483647.)

3.1.12 Example Cancer Benchmarks

- 60/173 - Apache-2.0

https://www.codabench.org/competitions/174/

CODABENCH CANCER HETEROGENEITY DT#3 IMMUNE CELL TYPES

https://www.codabench.org/competitions/148/

2 Submissions run successfully, 1 execution fails (screenshot below)

3.1.12 Example Cancer Benchmarks

- 61/173 - Apache-2.0

https://www.codabench.org/competitions/148/

Failed execution screenshot:

3.1.12 Example Cancer Benchmarks

- 62/173 - Apache-2.0

3.1.13 Public Tasks and Tasks Sharing

Codabench tasks are a combination of datasets and programs:

Scoring program

Ingestion program

Input data

Reference data

A scoring program is required while others are optional in a task.

In the Codabench Resources Interface you can upload datasets and programs in the Datasets & Programs tab and then create a task in the Tasks

tab.

Example of uploaded datasets and programs:

Example of a task created using the above datasets and programs:

•

•

•

•

3.1.13 Public Tasks and Tasks Sharing

- 63/173 - Apache-2.0

https://www.codabench.org/tasks/

Make a Task Public

You can make a task public that you have created by clicking on the task name to show task details and then click the button Make Public

EXAMPLE OF TASK DETAILS:

3.1.13 Public Tasks and Tasks Sharing

- 64/173 - Apache-2.0

Search Public Tasks

To search public tasks, you can check the Show Public Tasks to view public tasks from other users

3.1.13 Public Tasks and Tasks Sharing

- 65/173 - Apache-2.0

Use Public Tasks in Competitions

You can use public tasks created by other people in your competitions, to do this follow the steps below:

Open your competition and click Edit button

Click the Phases tab and click the edit button in front of the phase where you want to use a public task

Start writing the task name in the Tasks field and the matching task will show up. Click the task in the list to select it

1.

2.

3.

3.1.13 Public Tasks and Tasks Sharing

- 66/173 - Apache-2.0

3.1.14 Detailed Results and Visualization

Detailed results is a means of passing extra information from the scoring program to the frontend.

This is done via writing to a detailed_results.html file (OR any .html -- first by alphabetical order -- in the output folder), and setting

enable_detailed_results to True in competition settings (via yaml or editor).

This file is watched for changes and updated on the frontend every time the file is updated, so users can get a live feed from the compute worker.

There is no limitation to the contents of this HTML file, and can thus be used to relay any information desired. Use case ideas:

Plot data using a python plot library like matplotlib or seaborn.

plot the learning curve over time of a reinforcement learning challenge

plot the slope of a linear regression model

plot the location of clusters in a classification challenge

plot anything you can conceive of

Run a profiler that outputs a network of method calls.

Display any additional data about the submission file that can not be distilled down in to a score of some kind

How to include figures

Figures can be included directly inside the HTML code, by converting them in bytes format. An example is given in the scoring program of the Mini-

AutoML bundle.

Example

When the visualization is enabled, a link to the detailed results can be found on the leaderboard for each submission:

•

•

•

•

•

•

•

scoring.py

[...]

Path
input_dir = '/app/input' # Input from ingestion program
output_dir = '/app/output/' # To write the scores
reference_dir = os.path.join(input_dir, 'ref') # Ground truth data
prediction_dir = os.path.join(input_dir, 'res') # Prediction made by the model
score_file = os.path.join(output_dir, 'scores.json') # Scores
html_file = os.path.join(output_dir, 'detailed_results.html') # Detailed feedback

def write_file(file, content):
""" Write content in file.

 """
with open(file, 'a', encoding="utf-8") as f:

f.write(content)

def make_figure(scores):
x = get_dataset_names()
y = [scores[dataset] for dataset in x]
fig, ax = plt.subplots()
ax.plot(x, y, 'bo')
ax.set_ylabel('accuracy')
ax.set_title('Submission results')
return fig

def fig_to_b64(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
fig_b64 = base64.b64encode(buf.getvalue()).decode('ascii')
return fig_b64

def main():
Initialized detailed results
write_file(html_file, '<h1>Detailed results</h1>') # Create the file to give real-time feedback

[...] # compute the scores

Create a figure for detailed results
figure = fig_to_b64(make_figure(scores))
write_file(html_file, f'')

3.1.14 Detailed Results and Visualization

- 67/173 - Apache-2.0

https://github.com/codalab/competition-examples/blob/master/codabench/mini-automl/bundle/scoring_program/scoring.py
https://github.com/codalab/competition-examples/blob/master/codabench/mini-automl/bundle/scoring_program/scoring.py

The detailed_results.html , generated by the scoring program, is then shown:

3.1.14 Detailed Results and Visualization

- 68/173 - Apache-2.0

3.2 Running a Benchmarks

3.2.1 Benchmark Management & List Page

This page will show you how to create, manage, edit and delete your competitions.

It will also show you how to track the competitions you are currently in.

Competition create button (Form)

This button will take you to the wizard/form for creating competitions. This will allow you to walk through each step of creating a competition using

our creation/edit form. For more information on this form/wizard, please see the following link: Competition Creation: Form

Competition create button (Upload)

This button will take you to the upload page for competition bundles. Here you will be able to upload a competition bundle, and if it is validated and

processed successfully, you should see a link to your new competition. For more information on this page, please see the following link: Competition

Creation: Bundle

Competitions I'm running tab

This should be the default selection for the tab navigation at the top. Having this selected will show you all the competitions you currently run/

manage, and the available actions for them.

Competitions I'm in tab

Clicking on this tab will change the main view of the page. You should now see a list of competitions you're competing in (Without any competition

administrator options). Clicking any of these titles should bring you to the competition detail page of that competition.

3.2 Running a Benchmarks

- 69/173 - Apache-2.0

Publish competition button

This button will publish your competition in order to make it publicly available. If your competition is already published, this button will appear green

and be used to remove your competition from public availability (It will not be deleted). By default, if your competition is un-published, it appears grey.

Edit competition button

This button will take you to the wizard/form for editing competitions. For more information on the competition edit form, please see the link here

Delete competition button

Deletes your competition. There will be a confirmation dialogue before deletion. We cannot recover deleted competitions.

Competition link

A link to the competition's detail page where users can register, make submissions, view the leaderboard and terms, etc. For more information about

the competition detail page, see the link here

3.2.1 Benchmark Management & List Page

- 70/173 - Apache-2.0

The competition detail page is the main way to interact with competitions. This is where your participants (Or if you are a participant) will read the

pages you uploaded, register, make submissions, and check results.

1) Editor (organizer feature)

2) Copy competition secret URL (Document icon, secret URL covered)

3) Competition Detail Tab Navigation

Get Started

Phases

My Submissions

Results

Forum (if enabled)

4) Competition Detail Tab Pane Navigation

Competition organizer features

These features are only for competition organizers.

•

•

•

•

•

3.2.1 Benchmark Management & List Page

- 71/173 - Apache-2.0

Editor

Manage participants

Manage submissions

Manage dumps (save the current state of the competition as a bundle)

Migration

SUBMISSIONS

From here, you can: - Delete submissions - Re-run submissions - Set a submissions score - Force a submission to leaderboard

You can also view the logs, and all output associated with a submission.

Download CSV: Download a CSV file with all submission info

Re-run all submissions per phase: Re-runs all submissions in a phase.

Search: Used to search for a submission by file name

Phase: Used to filter submissions by phase

Status: Used to filter submissions by status

Action Buttons:

Blue Circular Arrow: Re-runs the submission

Yellow Cross: Cancels the current submission if it is running

Red Trash Can: Deletes the submission

Green arrow: Puts this submission on the leaderboard

PARTICIPANTS

From here, you should be able to: - Email all participants - Approve/Deny participants - Revoke participants

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.2.1 Benchmark Management & List Page

- 72/173 - Apache-2.0

Search: Search for a participant by username or email address.

Status: Filter participants by status

Email Participants: Opens a modal to email all participants:

Subject: The email subject

Content: The email content

COPY COMPETITION SECRET URL

Clicking the document icon copies the competition secret URL to your clipboard.

3.2.2 Competition Detail Tab Navigation

Used to navigate between the different sections of the competition detail page.

GET STARTED

Contains all the organizer made pages, and some defaults.

•

•

•

•

•

3.2.2 Competition Detail Tab Navigation

- 73/173 - Apache-2.0

PHASES

Contains a diagram list with details on each phase in the order in which they're active.

MY SUBMISSIONS

This view contains a table with all your submissions, and allows you to upload new ones.

3.2.2 Competition Detail Tab Navigation

- 74/173 - Apache-2.0

RESULTS

This view contains the leaderboard results.

3.2.2 Competition Detail Tab Navigation

- 75/173 - Apache-2.0

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

This page is where you can manage your resources e.g. Submissions, Datasets, Programs, Tasks, and Competition Bundles. You can also view and

manage your quota on this page.

You can access this interface by clicking on "Resources" in the main menu:

Submissions

In this tab, you can view all your submissions either uploaded in this interface or submitted to a competition.

By clicking the Add Submission button you can fill a form and attach a submission file to upload a new submission. This is useful in different cases

e.g. when you want to share a sample submission with the participants of a competition you are organizing.

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 76/173 - Apache-2.0

Datasets/Programs

In this tab, you can view the datasets and programs that you have uploaded. You can also view auto-created and publicly available datasets/

programs by checking the relevant checkboxes.

By clicking the Add Dataset/Program button you can fill a form and attach a dataset file to upload.

You can click on a dataset/program and make it public or private. This is useful when you want to share a dataset with participants so that hey can

use it to prepare a submission for a competition.

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 77/173 - Apache-2.0

For a general breakdown of the roles of different types of datasets, see this link: Competition Bundle Structure: Data types and their role.

Tasks

In this tab, you can manage your tasks. You can create a new task, upload a task, edit a task and check task details.

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 78/173 - Apache-2.0

https://github.com/codalab/competitions-v2/wiki/Competition-Bundle-Structure#data-types-and-their-role

CREATE NEW TASK

To create a new task, you have to fill the form by entering task name and description

You also have to select datasets and programs from the already uploaded ones in the Datasets/Programs tab

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 79/173 - Apache-2.0

EDIT A TASK

You can change the task name and description

You can also change the datasets/programs used in the task

Organizers should be careful when updating a task because some submissions may have used the task and updating the task will not allow you to rerun

those submissions because the task they have used is now changed.

Note

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 80/173 - Apache-2.0

UPLOAD A TASK

You can create a new task by uploading a task zip that has the required files in the correct format.

Create a zip file that consists of a task.yaml file and zips of datasets/programs if required. You can use already existing datasets/prograsm by

using their keys in the yaml, or upload new datasets/programs or use a mix of keys and files e.g. you choose to use already existing input data and

reference data but use zip files for ingestion and scoring program. In the last case, codabench will create two programs and then use them in your

task and will use existing datasets in the same task.

Check the files below for examples of task upload zips.

task_with_keys_only.zip

task_with_files_only.zip

task_with_mix_of_keys_and_files.zip

For reference, here is the content of the task.yaml file that you can find inside the task_with_mix_of_keys_and_files.zip task:

•

•

•

task.yaml

name: Iris Task
description: Iris Task for Flower classification
is_public: false
scoring_program:

zip: iris-scoring-program.zip
ingestion_program:

zip: iris-ingestion-program.zip
input_data:

key: 6c3e6dde-d0fa-4c22-af66-030187dbfd4f
reference_data:

key: c4179c3f-498c-486a-8ac5-1e194036a3ed

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 81/173 - Apache-2.0

https://github.com/user-attachments/files/17597251/task_with_keys_only.zip
https://github.com/user-attachments/files/17597252/task_with_files_only.zip
https://github.com/user-attachments/files/17597265/task_with_mix_of_keys_and_files.zip

TASK DETAILS

In the task details, you can view all the task details e.g. title, description, task owner, created date, people with whom this task is shared, competitions

where this task is used, the datasets/programs used in this task and option to download them, and option to make the task public/private.

Competition Bundles

In this tab, you can mange your competition bundles. These bundles are stored when you create your competitions using a zip.

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 82/173 - Apache-2.0

Quota and Cleanup

This section of the resource interface shows you the usage of your quota. A free quota of 15 GB is given to all the users and this can be increased by

the platform administrators in special circumstances for selected users. You can also do some quick cleanup from here by deleting unused

resources e.g. submissions, datasets and tasks etc.

3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles

- 83/173 - Apache-2.0

3.2.4 Update programs or data

In this page, you'll learn how to update critical elements of your benchmark like the scoring program or the reference data, while your benchmark is

already up and running.

For a general overview of resources management, click here.

If order to update your programs or data, you have two approaches: - A. Edit an existing Task (simpler and straightforward) - B. Create a new Task

Let's see both approach in detail.

A. Edit an existing Task

1. PREPARE THE NEW DATASET OR PROGRAM

Make local changes to the elements you want to update: scoring program, ingestion program, input data and/or reference data.

Zip the new version of your program or data. Make sure to zip the files at the root of the archive, without zipping the folder structure.

2. UPLOAD THE NEW DATASET OR PROGRAM

Go to Resources

Go to "Datasets and Programs" and click on "Add Dataset/Program"

Fill in the form: Name the new program or dataset, select the type (scoring program, input data, etc.), and select your ZIP file

•

•

•

•

•

3.2.4 Update programs or data

- 84/173 - Apache-2.0

3. UPDATE THE TASK USED BY YOUR BENCHMARK

Still on "Resources" page, go to the "Task" tab. Find the task you want to edit. In order to recognize it, make sure it is marked as "In Use", and click to

see more information and make sure it is related to the right benchmark.

Then click on the pencil symbol to edit it:

Start typing the name of your new program or dataset in the corresponding field and select it, then save.

Done! Your task is updated and its new version will be triggered by new submissions. You don't need to update the benchmark/competition for the

change to take effect.

B. Create a new Task

1. PREPARE YOUR NEW DATASET / PROGRAM

First, upload the new versions of your program and/or dataset. To that end, follow steps 1. and 2. presented above.

2. CREATE TASK

Go to "Resources" > "Task" > "Create Task"

Fill in all fields: Name, Description, Scoring program, (optionally: Ingestion program, Reference data, Input data)

EDIT YOUR BENCHMARK

Once your task is created, go to the editor of your challenge

•

•

•

3.2.4 Update programs or data

- 85/173 - Apache-2.0

Go to "Phases" and edit the relevant phase

Select your new task and save

Done! Your benchmark is now ready to run your new task for future submissions.

•

•

3.2.4 Update programs or data

- 86/173 - Apache-2.0

3.2.5 Queue Management

The queue management page lists all queues you have access to, and optionally all current public queues.

For queues you've created, it will also show options for editing, deleting, copying and displaying the broker URL.

You can also create new queues from this page. You can use the server status page to have an overview of the submissions made to a queue you

own.

1) Show Public Queues

2) Create Queue

3) Action Buttons

Eye Icon

Document Icon

Edit Icon

Trash Icon

Show Public Queues

Enabling this checkbox will display public queues as well as queues you organized, or have been given access to. You will not be able to edit them,

but you can view queue details and copy the broker URL.

Create Queue

Clicking this button will bring up a modal with the queue form.

•

•

•

•

3.2.5 Queue Management

- 87/173 - Apache-2.0

The following fields are present:

Name: The name of the queue

Make Public: If checked, this queue will be available for public use.

Collaborators: A multi-select field that you can search for users by username or email. These will be people who have access to your queue.

Action Buttons

EYE ICON

Clicking this button will show you details about your queue such as the Broker URL and Vhost name.

DOCUMENT ICON

The document icon is used to copy the broker URL to your clipboard with one-click.

EDIT ICON

The edit icon brings up the queue modal/form for editing the current queue.

TRASH ICON

The trash icon deletes the current queue. There will be a confirmation dialogue. Once this is done your queue is gone forever so be careful.

Compute workers setup

See compute worker management and setup for more information about workers configuration.

Internal and external compute workers can be linked to Codabench competitions. The queues dispatch the jobs between the compute workers. Note

that a queue can receive jobs (submissions) from several competitions, and can send them to several compute workers. The general architecture of

queues and workers can be represented like this:

•

•

•

3.2.5 Queue Management

- 88/173 - Apache-2.0

3.2.5 Queue Management

- 89/173 - Apache-2.0

3.2.6 Compute Worker Management & Setup

Compute workers are simply machines that are able to accept/send celery messages on the port used by the broker URL you wish to connect to that

have a compute worker image, or other software to receive submissions. This means that you can add computing power to your competitions or

benchmarks if needed! Any computer, from your own physical machines to virtual machines on cloud computing services can be used for this

purpose. You can add multiple workers to a queue to process several submissions simultaneously.

To use Docker, follow these instructions below:

Steps:

Have a machine (either physical or virtual, 100 GB storage recommended)

Install Docker

Pull Compute Worker Image

Run the compute worker via Docker

Install Docker

Either:

a) Install docker via the installation script: https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-using-the-convenience-script

b) Install manually, following the steps at: https://docs.docker.com/install/

Pull Compute Worker Image

On the compute worker machine, run the following command in a shell:

That will pull the latest image for the v2 worker. For specific versions, see the docker hub page at: https://hub.docker.com/r/codalab/competitions-

v2-compute-worker/tags

Start CPU worker

Make a file .env and put this in it:

To use Podman, go to the Podman documentation.

•

•

•

•

curl https://get.docker.com | sudo sh
sudo usermod -aG docker $USER

docker pull codalab/competitions-v2-compute-worker

.env

Queue URL
BROKER_URL=<desired broker URL>

Location to store submissions/cache -- absolute path!
HOST_DIRECTORY=/codabench

If SSL isn't enabled, then comment or remove the following line
BROKER_USE_SSL=True

3.2.6 Compute Worker Management & Setup

- 90/173 - Apache-2.0

The broker URL is a unique identifier of the job queue that the worker should listen to. To create a queue or obtain the broker URL of an existing

queue, you can refer to Queue Management wiki page.

/codabench -- this path needs to be volumed into /codabench on the worker, as you can see below. You can select another location if convenient.

Create a docker-compose.yml file and paste the following content in it:

hostname: ${HOSTNAME} allows you to set the hostname of the compute worker container, which will then be shown in the server status page on

Codabench. This can be set to anything you want, by setting the HOSTNAME environment variable on the machine hosting the Compute Worker, then

uncommenting the line the docker-compose.yml before launching the compute worker.

You can then launch the worker by running this command in the terminal where the docker-compose.yml file is located:

DEPRECATED METHOD (ONE LINER)

Alternately, you can use the docker run below:

Start GPU worker

Make a .env file, as explained in CPU worker instructions.

Then, install the NVIDIA toolkit: Nvidia toolkit installation instructions

Once you install and configure the NVIDIA container toolkit, you can create a docker-compose.yml file with the following content:

Note

•

•

docker-compose.yml

Codabench Worker
services:

worker:
image: codalab/competitions-v2-compute-worker:latest
container_name: compute_worker
volumes:

- /codabench:/codabench
- /var/run/docker.sock:/var/run/docker.sock

env_file:
- .env

restart: unless-stopped
#hostname: ${HOSTNAME}
logging:

options:
max-size: 50m
max-file: 3

Note

docker compose up -d

docker run \
-v /codabench:/codabench \
-v /var/run/docker.sock:/var/run/docker.sock \
-d \
--env-file .env \
--name compute_worker \
--restart unless-stopped \
--log-opt max-size=50m \
--log-opt max-file=3 \
codalab/competitions-v2-compute-worker:latest

docker-compose.yml

Codabench GPU worker (NVIDIA)
services:

worker:
image: codalab/competitions-v2-compute-worker:gpu1.3
container_name: compute_worker
volumes:

- /codabench:/codabench

3.2.6 Compute Worker Management & Setup

- 91/173 - Apache-2.0

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html

hostname: ${HOSTNAME} allows you to set the hostname of the compute worker container, which will then be shown in the server status page on

Codabench. This can be set to anything you want, by setting the HOSTNAME environment variable on the machine hosting the Compute Worker, then

uncommenting the line the docker-compose.yml before launching the compute worker.

You can then launch the worker by running this command in the terminal where the docker-compose.yml file is located:

NVIDIA-DOCKER WRAPPER (DEPRECATED METHOD)

Nvidia installation instructions

Note that a competition docker image including CUDA and other GPU libraries, such as codalab/codalab-legacy:gpu , is then required.

Check logs

Use the following command to check logs and ensure everything is working fine:

Cleaning up periodically

It is recommended to clean up docker images and containers regularly to avoid filling up the storage.

Run the following command:

Add the following line:

- /var/run/docker.sock:/var/run/docker.sock
env_file:

- .env
restart: unless-stopped
#hostname: ${HOSTNAME}
logging:

options:
max-size: 50m
max-file: 3

runtime: nvidia
deploy:

resources:
reservations:

devices:
- driver: nvidia

count: all
capabilities:

- gpu

Note

docker compose up -d

nvidia-docker run \
-v /codabench:/codabench \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /var/lib/nvidia-docker/nvidia-docker.sock:/var/lib/nvidia-docker/nvidia-docker.sock \
-d \
--env-file .env \
--name compute_worker \
--restart unless-stopped \
--log-opt max-size=50m \
--log-opt max-file=3 \
codalab/competitions-v2-compute-worker:gpu

docker logs -f compute_worker

1.

sudo crontab -e

1.

@daily docker system prune -af

3.2.6 Compute Worker Management & Setup

- 92/173 - Apache-2.0

https://github.com/NVIDIA/nvidia-docker#quickstart

Keep track of the worker

It is recommended to store the docker container hostname to identify the worker. This way, it is easier to troubleshoot issues when having multiple

workers in one queue. To get the hostname, simply run docker ps and look at the key CONTAINER ID at the beginning of the output:

For each submission made to your queue, you can know what worker computed the ingestion and the scoring jobs in the server status page.

Optional: put data directly inside the compute worker

The folder $HOST_DIRECTORY/data , usually /codabench/data , is shared between the host (the compute worker) and the container running the

submission (a new container is created for each submission). It is mounted inside the container as /app/data . This means that you can put data in

your worker, in $HOST_DIRECTORY/data , so it can be read-only accessed during the job's process. You'll need to modify the scoring and/or ingestion

programs accordingly, to points to /app/data . This is especially useful if you work with confidential data, or with a heavy dataset.

Building compute worker

This is helpful only if you want to build the compute worker image. It is not needed if you simply want to set up compute workers to run submissions.

To build the normal image:

To build the GPU version:

To update the image (add tag :latest , :gpu or else if needed)

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1a2b3d4e5f67 codalab/competitions-v2-compute-worker:latest "/bin/sh -c 'celery …" 3 days ago Up 3 days compute_worker

If you have several workers in your queue, remember to have the data accessible for each one.

If you simply wish to set up some compute workers to increase the computing power of your benchmark, you don't need to scroll this page any

further.

docker build -t codalab/competitions-v2-compute-worker:latest -f Dockerfile.compute_worker .

docker build -t codalab/competitions-v2-compute-worker:gpu -f Dockerfile.compute_worker_gpu .

docker push codalab/competitions-v2-compute-worker

3.2.6 Compute Worker Management & Setup

- 93/173 - Apache-2.0

Worker management

Outside of docker containers install Fabric like so:

Create a server_config.yaml in the root of this repository using:

Below is an example server_config.yaml that defines 2 roles comp-gpu and comp-cpu , one with GPU style workers (is_gpu and the GPU

docker_image) and one with CPU style workers

You can of course create your own docker_image and specify it here.

You can execute commands against a role:

See available commands with fab -l

Update docker image

If the compute worker docker image was updated, you can reflect the changes using the following commands.

Check no job is running:

Update the worker:

If you have running compute workers, you'll need to pull again the image and to restart the workers to take into account the changes.

pip install fab-classic==1.17.0

cp server_config_sample.yaml server_config.yaml

server_config.yaml

comp-gpu:
hosts:

- ubuntu@12.34.56.78
- ubuntu@12.34.56.79

broker_url: pyamqp://user:pass@host:port/vhost-gpu
is_gpu: true
docker_image: codalab/competitions-v2-compute-worker:gpu

comp-cpu:
hosts:

- ubuntu@12.34.56.80
broker_url: pyamqp://user:pass@host:port/vhost-cpu
is_gpu: false
docker_image: codalab/competitions-v2-compute-worker:latest

fab -R comp-gpu status
..
[ubuntu@12.34.56.78] out: CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

[ubuntu@12.34.56.78] out: 1d318268bee1 codalab/competitions-v2-compute-worker:gpu "/bin/sh -c 'celery …" 2 hours ago Up 2
hours hardcore_greider
..

fab -R comp-gpu update
..
(updates workers)

docker ps

docker stop compute_worker
docker rm compute_worker
docker pull codalab/competitions-v2-compute-worker:latest # or other relevant docker image
docker run \ # or docker compose up -d

-v /codabench:/codabench \
-v /var/run/docker.sock:/var/run/docker.sock \
-d \
--env-file .env \
--name compute_worker \
--restart unless-stopped \
--log-opt max-size=50m \
--log-opt max-file=3 \
codalab/competitions-v2-compute-worker:latest # or other relevant docker image

3.2.6 Compute Worker Management & Setup

- 94/173 - Apache-2.0

http://fabfile.org/

3.2.7 Compute Worker Management with Podman

Here is the specification for compute worker installation by using Podman.

Requirements for the host machine

We need to install Podman on the VM. We use Debian based OS, like Ubuntu. Ubuntu is recommended, because it has better Nvidia driver support.

sudo apt install podman

After installing Podman, you will need to launch the service associated to it with systemctl --user enable --now podman

Then, configure where Podman will download the images: Podman will use Dockerhub by adding this line into /etc/containers/registries.conf :

unqualified-search-registries = ["docker.io"]

Create the .env file in order to add the compute worker into a queue (here, the default queue is used. If you use a particular queue, then, fill in your

BROKER_URL generated when creating this particular queue) :

You will also need to create the codabench folder defined in the .env file, as well as change its permissions to the user that is running the compute

worker.

You should also run the following command if you don't want the container to be shutdown when you log out of the user:

Make sure to use the username of the user running the podman container.

For GPU compute worker VM

You need to install nvidia packages supporting Podman and nvidia drivers:

Edit the nvidia runtime config

Check if nvidia driver is working, by executing:

.env

BROKER_URL=pyamqp://<login>:<password>@codabench-test.lri.fr:5672
HOST_DIRECTORY=/codabench
If SSL isn't enabled, then comment or remove the following line
BROKER_USE_SSL=True
CONTAINER_ENGINE_EXECUTABLE=podman

In your terminal

sudo mkdir /codabench
sudo mkdir /codabench/data
sudo chown -R $(id -u):$(id -g) /codabench

sudo loginctl enable-linger *username*

distribution=$(. /etc/os-release;echo IDVERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-container.list

sudo apt update
sudo apt install nvidia-container-runtime nvidia-containe-toolkit nvidia-driver-<version>

sudo sed -i 's/^#no-cgroups = false/no-cgroups = true/;' /etc/nvidia-container-runtime/config.toml

nvidia-smi

+---+
| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA GeForce ... On	00000000:01:00.0 Off	N/A
27% 26C P8 20W / 250W	1MiB / 11264MiB	0% Default

3.2.7 Compute Worker Management with Podman

- 95/173 - Apache-2.0

The result should show gpu card information.

We need to configure the OCI hook (entry point to inject code) script for nvidia. Create this file /usr/share/containers/oci/hooks.d/oci-nvidia-

hook.json if not exists:

Validating if all are working by running a test container:

The result should show as same as the command nvidia-smi above.

You will also need to add this line in your .env file:

Compute worker installation

FOR CPU CONTAINER

Run the compute worker container :

FOR GPU CONTAINER

Run the GPU compute worker container

| | | N/A |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

oci-nvidia-hook.json

{
"version": "1.0.0",
"hook": {

"path": "/usr/bin/nvidia-container-toolkit",
"args": ["nvidia-container-toolkit", "prestart"],
"env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
]

},
"when": {

"always": true,
"commands": [".*"]

},
"stages": ["prestart"]

}

podman run --rm -it \
--security-opt="label=disable" \
--hooks-dir=/usr/share/containers/oci/hooks.d/ \
nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi

USE_GPU=True

podman run -d \
--volume /run/user/$(id -u)/podman/podman.sock:/run/user/1000/podman/podman.sock:U \
--env-file .env \
--name compute_worker \
--security-opt="label=disable" \
--userns host \
--restart unless-stopped \
--log-opt max-size=50m \
--log-opt max-file=3 \
--cap-drop all \
--volume /codabench:/codabench:U,z \
codalab/codabench_worker_podman:latest

podman run -d \
--env-file .env \
--device nvidia.com/gpu=all \
--name gpu_compute_worker \
--device /dev/fuse \
--security-opt="label=disable" \
--restart unless-stopped \
--log-opt max-size=50m \
--log-opt max-file=3 \
--hostname ${HOSTNAME} \

3.2.7 Compute Worker Management with Podman

- 96/173 - Apache-2.0

--userns host \
--volume /home/codalab/worker/codabench:/codabench:z,U \
--cap-drop=all \
--volume /run/user/$(id -u)/podman/podman.sock:/run/user/1000/podman/podman.sock:U \
codalab/codabench_worker_podman_gpu:latest

3.2.7 Compute Worker Management with Podman

- 97/173 - Apache-2.0

3.2.8 Server Status

The server status page gives information about past and current submissions, and is useful for troubleshooting. Any user can access the interface,

and get information about their own submissions and the submissions made to queues they own. Administrators can see all submissions. Here is an

overview of the page:

Note that * refers to the default queue of the platform. "Hostname" refers to the docker container ID of the compute worker that computed the job.

How to access the interface

You can access it either from the top right menu, or from the "Queue management" page, as shown in the screenshots below.

3.2.8 Server Status

- 98/173 - Apache-2.0

3.2.8 Server Status

- 99/173 - Apache-2.0

4. Developers and Administrators

4.1 Codabench Basic Installation Guide

Compared to Codalab, installing Codabench should be relatively easy since you no longer have to worry about special ways to set up SSL or storage.

We include default solutions that should handle that for most basic uses.

4.1.1 Pre-requisites

Install Docker and Docker Compose

Docker

Docker Compose

4.1.2 Clone Repository

Download the Codabench repository:

4.1.3 Edit the settings (.env)

The .env file contains the settings of your instance. On a fresh installation, you will need to use the following command to get your .env file:

Then edit the necessary settings inside. The most important are the database, storage, and Caddy/SSL settings. For a quick local setup, you should

not need to edit this file. For a public server deployment, you will have to modify some settings.

If you are using AWS_S3_ENDPOINT_URL=http://minio:9000/ in your .env , edit your /etc/hosts file by adding this line 127.0.0.1 minio

FOR MACOS

In .env , replace:

by

4.1.4 Start the service

To deploy the platform, run:

•

•

git clone https://github.com/codalab/codabench

cd codabench
cp .env_sample .env

It is important to change the default passwords if you intend for the instance to be public

AWS_S3_ENDPOINT_URL=http://minio:9000/

AWS_S3_ENDPOINT_URL=http://docker.for.mac.localhost:9000/

If needed, some troubleshooting of this step is provided at the end of this page or in this page

docker compose up -d

4. Developers and Administrators

- 100/173 - Apache-2.0

https://docs.docker.com/install/
https://docs.docker.com/compose/install/

4.1.5 Run the following commands

Create the required tables in the database:

Generate the required static resource files:

You should be able to verify it is running correctly by looking at the logs with docker compose logs -f and by visiting localhost:80 (Depending on

your configuration).

4.1.6 Advanced Configuration

Testing

To run automated tests for your local instance, get inside the Django container with docker compose exec django bash then run py.test to start

the automated tests.

SSL

To enable SSL:

If you already have a DNS for your server that is appropriate, in the .env simply set DOMAIN_NAME to your DNS. Remove any port designation like

:80 . This will have Caddy serve both HTTP and HTTPS.

Validate user account on local instance

When deploying a local instance, the email server is not configured by default, so you won't receive the confirmation email during signup.

To manually confirm your account:

Find the confirmation link in the Django logs using docker compose logs -f django

Replace example.com by localhost on the URL and open it in your browser.

Another way is to go inside the Django containers and use commands like in administrative procedures.

Troubleshooting storage endpoint URL

You may have to manually change the endpoint URL to have your local instance working. This may be an OS related issue. Here is a possible fix:

docker compose logs -f minio

Grab the first one of these IP addresses:

Set AWS_S3_ENDPOINT_URL=http://172.27.0.5:9000 in your .env file.

If static files are not loaded correctly, adding DEBUG=True to the .env file can help.

docker compose exec django ./manage.py migrate

docker compose exec django ./manage.py collectstatic --noinput

•

For a public instance, HTTPS is strongly recomended

1.

2.

1.

2.

minio_1 | Browser Access:
minio_1 | http://172.27.0.5:9000 http://127.0.0.1:9000

3.

4.1.5 Run the following commands

- 101/173 - Apache-2.0

For Apple CPU (M1, M2 chips)

In docker-compose.yml , replace in the compute_worker service:

by

Storage

By default, Codabench uses a built-in MinIO container. Some users may want a different solution, such as S3 or Azure. The configuration will vary

slightly for each different type of storage.

For all possible supported storage solutions, see: https://django-storages.readthedocs.io/en/latest/

Remote Compute Workers

To set up remote compute workers, you can follow the steps described in our Compute Worker Management page.

4.1.7 Troubleshooting

Read the following guide for troubleshooting: How to deploy Codabench.

Also, adding DEBUG=True to the .env file can help with troubleshooting the deployment.

Open a Github issue to find help with your installation

4.1.8 Online Deployement

For information about online deployment of Codabench, go to the following page

docker-compose.yml

command: bash -c "watchmedo auto-restart -p '*.py' --recursive -- celery -A compute_worker worker -l info -Q compute-worker -n compute-worker@%n"

docker-compose.yml

command: bash -c "celery -A compute_worker worker -l info -Q compute-worker -n compute-worker@%n"

4.1.7 Troubleshooting

- 102/173 - Apache-2.0

https://github.com/codalab/codabench/issues

4.2 How to Deploy a Server

4.2.1 Overview

This document focuses on how to deploy the current project to the local machine or server you are on.

4.2.2 Preliminary steps

As for the minimal local installation, you first need to:

Install docker and docker-compose (see instructions)

Clone Codabench repository:

4.2.3 Modify .env file configuration

Then you need to modify the .env file with the relevant settings. This step is critical to have a working and secure deployment.

Go to the folder where codabench is located (cd codabench)

Then edit the variables inside the .env file.

Submissions endpoint

For an online deployment, you'll need to fill in the IP address or domain name in some environment variables.

USING AN IP ADDRESS

b) For an online deployment using IP address:

To get the IP address of the machine. You can use one of the following commands:

ifconfig -a

ip addr

ip a

hostname -I | awk '{print $1}'

nmcli -p device show

Replace the value of IP address in the following environment variables according to your infrastructure configuration:

USING A DOMAIN NAME (DNS)

1.

2.

git clone https://github.com/codalab/codabench

•

cp .env_sample .env

Note

•

•

•

•

•

.env

SUBMISSIONS_API_URL=https://<IP ADDRESS>/api
DOMAIN_NAME=<IP ADDRESS>:80
AWS_S3_ENDPOINT_URL=http://<IP ADDRESS>/

.env

4.2 How to Deploy a Server

- 103/173 - Apache-2.0

Change default usernames and passwords

Set up new usernames and passwords:

4.2.4 Open Access Permissions for following port number

If you are deploying on a Linux server, which usually has a firewall, you need to open access permissions to the following port numbers

5672 : rabbit mq port

8000 : django port

9000 : minio port

4.2.5 Modify django-related configuration

Go to the folder where codabench is located

Go to the settings directory and modify base.py file

cd src/settings/

nano base.py

Change the value of DEBUG to True

DEBUG = os.environ.get("DEBUG", True)

SUBMISSIONS_API_URL=https://yourdomain.com/api
DOMAIN_NAME=yourdomain.com
AWS_S3_ENDPOINT_URL=https://yourdomain.com

If you are deploying on an azure machine, then AWS_S3_ENDPOINT_URL needs to be set to an IP address that is accessible on the external

network

DB_USERNAME=postgres
DB_PASSWORD=postgres
[...]
RABBITMQ_DEFAULT_USER=rabbit-username
RABBITMQ_DEFAULT_PASS=rabbit-password-you-should-change
[...]
FLOWER_BASIC_AUTH=root:password-you-should-change
[...]
#EMAIL_HOST_USER=user
#EMAIL_HOST_PASSWORD=pass
[...]
MINIO_ACCESS_KEY=testkey
MINIO_SECRET_KEY=testsecret
or
AWS_ACCESS_KEY_ID=testkey
AWS_SECRET_ACCESS_KEY=testsecret

It is very important to set up an SSL certificate for Public deployement

•

•

•

•

•

•

•

•

•

4.2.4 Open Access Permissions for following port number

- 104/173 - Apache-2.0

Comment out the following code

4.2.6 Start service

Execute command docker compose up -d

Check if the service is started properly docker compose ps

Create the required tables in the database: docker compose exec django ./manage.py migrate

Generate the required static resource files: docker compose exec django ./manage.py collectstatic --noinput

You can generate mock data with docker compose exec django ./manage.py generate_data if you want to test the website. However, it is not

recomended to do that on an installation that you intend to use for Production

If DEBUG is not set to true, then you will not be able to load to the static resource file

•

===
Debug
===
#if DEBUG:
INSTALLED_APPS += ('debug_toolbar',)
MIDDLEWARE = ('debug_toolbar.middleware.DebugToolbarMiddleware',
'querycount.middleware.QueryCountMiddleware',
) + MIDDLEWARE # we want Debug Middleware at the top
tricks to have debug toolbar when developing with docker
#
INTERNAL_IPS = ['127.0.0.1']
#
import socket
#
try:
INTERNAL_IPS.append(socket.gethostbyname(socket.gethostname())[:-1])
except socket.gaierror:
pass
#
QUERYCOUNT = {
'IGNORE_REQUEST_PATTERNS': [
r'^/admin/',
r'^/static/',
]
}
#
DEBUG_TOOLBAR_CONFIG = {
"SHOW_TOOLBAR_CALLBACK": lambda request: True
}

•

•

codabench_compute_worker_1 "bash -c 'watchmedo …" running
codabench_caddy_1 "/bin/parent caddy -…" running 0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->443/tcp, :::443->443/tcp, 2015/tcp
codabench_site_worker_1 "bash -c 'watchmedo …" running
codabench_django_1 "bash -c 'cd /app/sr…" running 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp
codabench_flower_1 "flower" restarting
codabench_rabbit_1 "docker-entrypoint.s…" running 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp, :::5672->5672/tcp, 15671/tcp, 25672/tcp, 0.
0.0.0:15672->15672/tcp, :::15672->15672/tcp
codabench_minio_1 "/usr/bin/docker-ent…" running 0.0.0.0:9000->9000/tcp, :::9000->9000/tcp
codabench_db_1 "docker-entrypoint.s…" running 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp
codabench_builder_1 "docker-entrypoint.s…" running
codabench_redis_1 "docker-entrypoint.s…" running 0.0.0.0:6379->6379/tcp, :::6379->6379/tcp

•

•

Tip

4.2.6 Start service

- 105/173 - Apache-2.0

4.2.7 Set public bucket policy to read/write

This can easily be done via the minio web console (local URL: minio:9000)

4.2.8 Checkout the log of the specified container

docker compose logs -f django : checkout django container logs in the docker-compose service

docker compose logs -f site_worker : checkout site-worker container logs in the docker-compose service

docker compose logs -f compute_worker : checkout compute-worker container logs in the docker-compose service

docker compose logs -f minio : checkout minio container logs in the docker-compose service

You can also use docker compose logs -f to get the logs of all the containers.

4.2.9 Stop service

Execute command docker compose down --volumes

4.2.10 Disabling docker containers on production

To override settings on your production server, create a docker-compose.override.yml in the codabench root directory. If on your production server,

you are using remote MinIO or another cloud storage provider then you don't need minio container. If you have already buckets available for your s3

storage, you don't need createbuckets container. Therefore, you should disable minio and createbuckets containers. You may also want to disable the

compute worker that is contained in the main server compute, to keep only remote compute workers.

The following commands can help you debug

•

•

•

•

•

4.2.7 Set public bucket policy to read/write

- 106/173 - Apache-2.0

Add this to your docker-compose.override.yml :

This will force the following container from exiting on start:

Compute Worker

MinIO

CreateBuckets

If you need one of these then remove the corresponding lines from the file before launching

4.2.11 Link compute workers to default queue

The default queue of the platform runs all jobs, except when a custom queue is specified by the competition or benchmark. By default, the compute

worker of the default queue is a docker container run by the main VM. If your server is used by many users and receives several submissions per day,

it is recommended to use separate compute workers and to link them to the default queue.

To set up a compute worker, follow this guide

In the .env file of the compute worker, the BROKER_URL should reflect settings of the .env file of the platform:

4.2.12 Personalize Main Banner

The main banner on the Codabench home page shows 3 organization logos

LISN

Université Paris-Saclay

CNRS

You can update these by:

Replacing the logos in src/static/img/ folder

Updating the code in src/templates/pages/home.html to point to the right websites of your organizations

docker-compose.override.yml

version: '3.4'
services:

compute_worker:
command: "/bin/true"

minio:
restart: "no"
command: "/bin/true"

createbuckets:
entrypoint: "/bin/true"
restart: "no"
depends_on:

minio:
condition: service_started

Warning

•

•

•

.env

BROKER_URL=pyamqp://<RABBITMQ_DEFAULT_USER>:<RABBITMQ_DEFAULT_PASS>@<DOMAIN_NAME>:<RABBITMQ_PORT>/
HOST_DIRECTORY=/codabench
BROKER_USE_SSL=True

•

•

•

1.

2.

4.2.11 Link compute workers to default queue

- 107/173 - Apache-2.0

https://www.lisn.upsaclay.fr/
https://www.universite-paris-saclay.fr/
https://www.cnrs.fr/

4.2.13 Frequently asked questions (FAQs)

Invalid HTTP method

Exception detail (by using docker logs -f codabench_django_1)

Solution

First, modify the .env file and set DJANGO_SETTINGS_MODULE=settings.develop

Then, restart services by using following docker-compose command

Missing static resources (css/js)

Solution: Change the value of the DEBUG parameter to True

nano competitions-v2/src/settings/base.py

DEBUG = os.environ.get("DEBUG", True)

Traceback (most recent call last):
File "/usr/local/lib/python3.8/site-packages/uvicorn/protocols/http/httptools_impl.py", line 165, in data_received

self.parser.feed_data(data)
File "httptools/parser/parser.pyx", line 193, in httptools.parser.parser.HttpParser.feed_data

httptools.parser.errors.HttpParserInvalidMethodError: invalid HTTP method
[2021-02-09 06:58:58 +0000] [14] [WARNING] Invalid HTTP request received.
Traceback (most recent call last):

File "/usr/local/lib/python3.8/site-packages/uvicorn/protocols/http/httptools_impl.py", line 165, in data_received
self.parser.feed_data(data)

File "httptools/parser/parser.pyx", line 193, in httptools.parser.parser.HttpParser.feed_data
httptools.parser.errors.HttpParserInvalidMethodError: invalid HTTP method

•

•

docker compose down --volumes
docker compose up -d

•

•

4.2.13 Frequently asked questions (FAQs)

- 108/173 - Apache-2.0

Also comment out the following code in base.py

CORS Error (could not upload bundle)

Exception detail (by checkout google develop tools)

Solution: Set AWS_S3_ENDPOINT_URL to an address that is accessible to the external network

nano codabench/.env

•

botocore.exceptions.EndpointConnectionError: Could not connect to the endpoint URL: "[http://docker.for.mac.localhost:9000/private/dataset/
2021-02-18-1613624215/24533cfc523e/competition.zip](http://docker.for.mac.localhost:9000/private/dataset/2021-02-18-1613624215/24533cfc523e/competition.zip)"

•

4.2.13 Frequently asked questions (FAQs)

- 109/173 - Apache-2.0

Make sure the IP address and port number is accessible by external network, You can check this by :

telnet {ip-address-filling-in AWS_S3_ENDPOINT_URL} {port-filling-in AWS_S3_ENDPOINT_URL}

Make sure the firewall is closed on port 9000

Upgrade the minio docker image to the latest version

Delete the previous minio directory folder in your codabench folder under /var/minio directory

Stop the current minio container

Delete the current minio container and the corresponding image

Re-execute docker compose up -d

Display logos error: logos don't upload from minio:

Check bucket policy of public minio bucket: read/write access should be allowed.

This can easily be done via the minio web console (local URL: minio:9000)

•

•

This problem may also be caused by a bug in MinIO, in which case you will need to follow these steps

•

•

•

•

•

4.2.13 Frequently asked questions (FAQs)

- 110/173 - Apache-2.0

Compute worker execution with insufficient privileges

This issue may be encountered when starting a docker container in a compute worker, the problem is caused by the installation of snap docker (if you

are using Ubuntu).

Solution

Uninstall snap docker

Install the official version of docker

4.2.14 Securing Codabench and Minio

Codabench uses Caddy to manage HTTPS and to secure Codabench. What you need is a valid DNS pointed towards the IP address of your instance.

Secure Minio with a reverse proxy

To secure MinIO, you should install a reverse-proxy, e.g: Nginx, and have a valid SSL certificate. Here is a tutorial sample:

Secure MinIO with Certbot and Letsencrypt

Don't forget to update your AWS_S3_ENDPOINT_URL parameter

Update it to AWS_S3_ENDPOINT_URL=https://<your minio>

•

•

4.2.14 Securing Codabench and Minio

- 111/173 - Apache-2.0

https://caddyserver.com/
https://blog.min.io/minio-nginx-letsencrypt-certbot/

Secure Minio on the same server as codabench (simpler)

Summary:

Use same SSL certs from letsencrypt (certbot) but change fullchain.pem -> public.crt and privkey.pem -> private.key. I copied from ./certs/caddy

(for django/caddy) to ./certs/minio/certs.

You need to change the command for minio to "server /export --certs-dir /root/.minio/certs" and not just "server /export"

Mount in certs:

Add "- ./certs/minio:/root/.minio" under the minio service's "volumes" section

Certs must be in /${HOME}/.minio and for dockers ends up being /root/.minio

Edit the .env with minio cert location:

Here is an example docker-compose.yml change for this:

•

•

•

•

•

•

MINIO_CERT_FILE=/root/.minio/certs/public.crt
MINIO_KEY_FILE=/root/.minio/certs/private.key
MINIO_CERTS_DIR=/certs/caddy # was told .pem files could work but for now separating
MINIO_CERTS_DIR=/root/.minio/certs # either this or the CERT\KEY above is redundant...but it works for now.
NOTE! if you change this port, change it in AWS_S3_ENDPOINT_URL as well
MINIO_PORT=9000

•

#---
Minio local storage helper
#---
minio:

image: minio/minio:RELEASE.2020-10-03T02-19-42Z
command: server /export --certs-dir /root/.minio/certs
volumes:

- ./var/minio:/export
- ./certs/minio:/root/.minio

restart: unless-stopped
ports:

- $MINIO_PORT:9000
env_file: .env
healthcheck:

test: ["CMD", "nc", "-z", "minio", "9000"]
interval: 5s
retries: 5

createbuckets:
image: minio/mc
depends_on:

minio:
condition: service_healthy

env_file: .env
volumes:
This volume is shared with `minio`, so `z` to share it
- ./var/minio:/export
entrypoint: >

/bin/sh -c "
 set -x;
 if [-n \"$MINIO_ACCESS_KEY\"] && [-n \"$MINIO_SECRET_KEY\"] && [-n \"$MINIO_PORT\"]; then
 until /usr/bin/mc config host add minio_docker https://minio:$MINIO_PORT $MINIO_ACCESS_KEY $MINIO_SECRET_KEY && break; do
 echo '...waiting...' && sleep 5;
 done;
 /usr/bin/mc mb minio_docker/$AWS_STORAGE_BUCKET_NAME || echo 'Bucket $AWS_STORAGE_BUCKET_NAME already exists.';
 /usr/bin/mc mb minio_docker/$AWS_STORAGE_PRIVATE_BUCKET_NAME || echo 'Bucket $AWS_STORAGE_PRIVATE_BUCKET_NAME already exists.';
 /usr/bin/mc anonymous set download minio_docker/$AWS_STORAGE_BUCKET_NAME;
 else
 echo 'MINIO_ACCESS_KEY, MINIO_SECRET_KEY, or MINIO_PORT are not defined. Skipping buckets creation.';
 fi;
 exit 0;
 "

4.2.14 Securing Codabench and Minio

- 112/173 - Apache-2.0

Don't forget to change the entrypoint to run https and not http.

4.2.15 Workaround: MinIO and Django on the same machine with only the port 443 opened to the external network.

The S3 API signature calculation algorithm does not support proxy schemes where you host the MinIO Server API such as example.net/s3/.

However, we can set the same URL for minio and django site and configure a proxy for each bucket in the Caddyfile :

Caddyfile :

Note

DOMAIN_NAME=https://mysite.com
AWS_S3_ENDPOINT_URL=https://mysite.com

 @dynamic {
 not path /static/* /media/* /{$AWS_STORAGE_BUCKET_NAME}* /{$AWS_STORAGE_PRIVATE_BUCKET_NAME}* /minio*
 }
 reverse_proxy @dynamic django:8000

 @min_bucket {
 path /{$AWS_STORAGE_BUCKET_NAME}* /{$AWS_STORAGE_PRIVATE_BUCKET_NAME}*
 }
 reverse_proxy @min_bucket minio:{$MINIO_PORT}

4.2.15 Workaround: MinIO and Django on the same machine with only the port 443 opened to the external network.

- 113/173 - Apache-2.0

4.3 Administrative Procedures

4.3.1 Maintenance Mode

You can turn on maintenance mode by creating a maintenance.on file in the maintenance_mode folder. This will change the front page of the

website, showing a customizable page (the maintenance.html file in the same folder).

Simply remove the maintenance_mode/maintenance.on file to end maintenance mode.

During testing, if you want to update or restart some services (e.g : Django), you should follow the following steps:

This procedure helps you update changes of your development on Django without having to restart every Codabench container.

4.3.2 Give superuser privileges to a user

With superuser privileges, the user can edit any benchmark and can access the Django admin interface.

4.3.3 Migration

4.3.4 Collect static files

4.3.5 Delete POSTGRESDB and MINIO :

This will delete all your data !

PURGE DATA

SEE DATA WE ARE GOING TO PURGE

RESTART SERVICES AND RECREATE DATABASE TABLES

docker compose stop django
docker compose rm django ## remove old django container
docker compose create django ## create new django container with the changes from your development
docker compose start django

docker compose exec django ./manage.py shell_plus
u = User.objects.get(username='<USERNAME>') ## can also use email
u.is_staff = True
u.is_superuser = True
u.save()

docker compose exec django ./manage.py makemigrations
docker compose exec django ./manage.py migrate

docker compose exec django ./manage.py collectstatic --noinput

Warning

Begin in codabench root directory
cd codabench

sudo rm -r var/postgres/*
sudo rm -r var/minio/*

ls var

4.3 Administrative Procedures

- 114/173 - Apache-2.0

4.3.6 Feature competitions in home page

There are two ways of setting a competition as featured: 1. Use Django admin (see below) -> click the competition -> scroll down to is featured filed ->

Check/Uncheck it 2. Use competition ID in the django bash to feature or unfeature a competition

4.3.7 Shell Based Admin Features

If you're running your own Codabench instance, there are different ways to interact with the application. Inside the django container (docker

compose exec django bash) you can use python manage.py help to display all available commands and a brief description. By far the most useful

are createsuperuser and shell/shell_plus .

4.3.8 Django Admin interface

Once you log in an account with superuser privileges, you have access to the "Django Admin" interface:

docker compose down
docker compose up -d
docker compose exec django ./manage.py migrate

docker compose exec django ./manage.py shell_plus
comp = Competition.objects.get(id=<ID>) ## replace <ID> with competition id
comp.is_featured = True ## set to False if you want to unfeature a competition
comp.save()

4.3.6 Feature competitions in home page

- 115/173 - Apache-2.0

From this interface, you can change a user's quota, change their staff and superuser status, change the featured competitions displayed on the

homepage, manage user accounts and more.

EDIT ANNOUNCEMENT AND NEWS

In the Django admin interface, click on Announcements or New posts :

For announcement, only the first announcement is read by the front page. For news, all objects are read as separate news. You can create and edit

objects using the interface. Write the announcement and news using HTML to format the text, add links, and more:

DELETE A USER

Go to Users :

Select it, select the Delete selected users action and click on Go :

4.3.8 Django Admin interface

- 116/173 - Apache-2.0

4.3.9 RabbitMQ Management

The RabbitMQ management tool allows you to see the status of various queues, virtual hosts, and jobs. By default, you can access it at: http://

<your_codalab_instance>:15672/ . The username/password is your RabbitMQ .env settings for username and password. The port is hard-set in

docker-compose.yml to 15672, but you can always change this if needed. For more information, see: https://www.rabbitmq.com/management.html

4.3.10 Flower Management

Flower is a web based tool for monitoring and administrating Celery clusters. By default, you can access the Flower web portal at http://

<your_codalab_instance>:5555/ . The username/password is your Flower .env settings for username and password. 5555 is the default port, and

cannot be changed without editing the docker-compose.yml file.

For more information on flower, please visit: https://flower.readthedocs.io/en/latest/

4.3.11 Storage analytics

THE INTERFACE

The storage analytics page is accessible at codabench-url/analytics/ under the storage tab.

From this interface, you will have access to various analytics data:

A Storage usage history chart

A Competitions focused storage evolution, distribution and table

A Users focused storage evolution, distribution and table

All of those data can be filtered by date range and resolution, and exported as CSVs.

The data displayed in those charts are only calculated from a background analytics task that takes place every Sunday at 02:00 UTC time (value

editable in the src/settings/base.py).

•

•

•

4.3.9 RabbitMQ Management

- 117/173 - Apache-2.0

https://flower.readthedocs.io/en/latest/
https://www.codabench.org/analytics/

THE BACKGROUND TASK

The analytics task is a celery tasked named analytics.tasks.create_storage_analytics_snapshot . What it does:

It scans the database looking for file sizes that are not set or flagged in error

Actually measures their size and saves it in the database

Aggregate the storage space used by day and by Competition/User (for example every day for the last year for each competition) by looking at the

database file size fields

For data related to the Platform Administration it measures as well the database backup folder directly from the storage instance.

Everything is saved as multiple snapshot in time in each Category table (i.g.: UserStorageDataPoint)

This tasks also runs a database <-> storage inconsistency check and saves the results in a log file located in the var/logs/ folder

To manually start the task, you can do the following:

Start codabench docker compose up -d

Bash into the django container and start a python console:

Manually start the task:

If you check the logs (docker compose logs -f) of the app you should see "Task create_storage_analytics_snapshot started" coming from the

site_worker container

If you have to restart the task, don't worry, it will only compute the size of the files that hasn't been computed yet.

Once the task is over you should be able to see the results on the web page

4.3.12 Homepage counters

There is also a daily background task counting users, competitions and submissions, in order to display it on the homepage.

You can manually run it:

4.3.13 User Quota management

INCREASE USER QUOTA

Using the Django Shell

•

•

•

•

•

•

•

•

docker compose exec django ./manage.py shell_plus

•

from analytics.tasks import create_storage_analytics_snapshot
eager_results = create_storage_analytics_snapshot.apply_async()

•

•

•

docker compose exec django ./manage.py shell_plus

from analytics.tasks import update_home_page_counters
eager_results = update_home_page_counters.apply_async()

docker-compose exec django ./manage.py shell_plus

u = User.objects.get(username='<USERNAME>') ## can also use email
u.quota = u.quota * 3 # We multiply the quota by 3 in this example
u.save()

4.3.12 Homepage counters

- 118/173 - Apache-2.0

Using the Django Admin Interface

Go to the Django admin page

Click user table

Select the user for whom you want to increase/decrease quota

Update the quota field with new quota (in GB e.g. 15)

4.3.14 Codabench Statistics

You can create two types of codabench statistics:

Overall platform statistics for a specified year

Overall published competitions statistics

Follow the steps below to create the statistics

START CODABENCH

BASH INTO THE DJANGO CONTAINER AND START A PYTHON CONSOLE:

FOR OVERALL PLATFORM STATISTICS

If year is not specified, the current year is used by default

A CSV file named codabench_statistics_2024.csv is generated in statistics folder (for year=2024)

FOR OVERALL PUBLISHED COMPETITIONS STATISTICS

A csv file named codabench_statistics_published_comps.csv is generated in statistics folder

•

•

•

•

•

•

docker compose up -d

docker compose exec django ./manage.py shell_plus

from competitions.statistics import create_codabench_statistics
create_codabench_statistics(year=2024)

Note

•

•

from competitions.statistics import create_codabench_statistics_published_comps
create_codabench_statistics_published_comps()

Note

4.3.14 Codabench Statistics

- 119/173 - Apache-2.0

4.4 Codabench Docker Architecture

Source:

Codabench consists of many docker containers that are connected and organized through docker compose. Below is an overview of each container

and their function:

4.4.1 Django

The main container that runs and contains the python code (A Django project). This is the container that is mainly used for utility functions like

creating admins, creating backups, and manually making changes through the python django shell. It has a gunicorn webserver that serves internally

on port 8000.

graph TD
A((User))
B[Caddy]
C{{Django}}
D[Postgres]
F{{Rabbit}}
G[Minio]
H[Create Buckets]
I{{Builder}}
K[Flower]
L[Compute Worker]
M[Site Worker]
A --> B
B --> C
C --> D
C --> F
F --> L
F --> M
C -->|Storage|G
G -->|Initialization Helper| H
F --> K
C -->|JS Asset Helper| I

4.4 Codabench Docker Architecture

- 120/173 - Apache-2.0

https://mermaidjs.github.io/mermaid-live-editor/#/edit/eyJjb2RlIjoiZ3JhcGggVERcbkEoKFVzZXIpKVxuQltDYWRkeV1cbkN7e0RqYW5nb319XG5EW1Bvc3RncmVzXVxuRnt7UmFiYml0fX1cbkdbTWluaW9dXG5IW0NyZWF0ZSBCdWNrZXRzXVxuSXt7QnVpbGRlcn19XG5LW0Zsb3dlcl1cbkxbQ29tcHV0ZSBXb3JrZXJdXG5NW1NpdGUgV29ya2VyXVxuQSAtLT4gQlxuQiAtLT4gQ1xuQyAtLT4gRFxuQyAtLT4gRlxuRiAtLT4gTFxuRiAtLT4gTVxuQyAtLT58U3RvcmFnZXxHXG5HIC0tPnxJbml0aWFsaXphdGlvbiBIZWxwZXJ8IEhcbkYgLS0-IEtcbkMgLS0-fEpTIEFzc2V0IEhlbHBlcnwgSVxuIiwibWVybWFpZCI6eyJ0aGVtZSI6ImRlZmF1bHQifX0

4.4.2 Caddy

The HTTP/HTTPs web server. It acts as a reverse proxy for the Django container. This container controls SSL/HTTPs functionality and other web

server configuration options. Serves on port 80/443.

4.4.3 Postgres (Labeled DB in docker-compose)

The default database container. It will contain the default Postgres database used by codabench. (Name/user/pass,etc determined by .env.) If you

need to make manual DB changes, this is the container to look into.

Here is the DB schema

4.4.4 Compute Worker

The container(s) (can be external) that runs submissions for the codabench instance on their associated queues. The default workers are tied to the

default queue. Commands to re-build the compute worker Docker image can be found here.

4.4.5 Site Worker

The container that runs various tasks for the Django container such as unpacking and processing a competition bundle.

4.4.6 Minio

The default storage solution container. Runs a MinIO instance that serves on the port defined by settings in your .env.

4.4.7 Create Buckets

A helper container for the Minio container that initially creates the buckets defined by settings in your .env if they don't already exist. Usually this

container exits after that.

4.4.8 Builder

A container to build RiotJS tags into a single unified tag that can then be mounted. Uses NPM.

4.4.2 Caddy

- 121/173 - Apache-2.0

4.4.9 Rabbit

Task/Message management container. Organizes queues for Celery Tasks and compute workers. Any queues that get created are accessible

through rabbit's own command line interface.

4.4.10 Flower

Administrative utility container for Celery tasks and queues.

4.4.11 Competition docker image

The services of Codabench run inside Docker environments. This should not be confused with the Docker environment used to run the submissions,

which may vary for each benchmark. The docker running submissions is discussed here

4.4.9 Rabbit

- 122/173 - Apache-2.0

4.5 Submission Docker Container Layout

When you make a submission to Codabench, the information and file are saved to the database. Afterwards, a Celery task gets sent to the compute

worker (Default queue or a compute worker attached to a custom queue). From there the compute worker spins up another docker container with

either the default docker image for submissions, or a custom one supplied by the organizer.

4.5.1 Site Worker

The site worker can be thought of exactly how it sounds. It's a local celery worker for the site to handle different Celery tasks and other miscellaneous

functions. This is what is responsible for creating competition dumps, unpacking competitions, firing off the tasks for re-running submissions, etc.

4.5.2 Compute Worker

Is a remote and/or local celery worker that listens to the main RabbitMQ server for tasks. A compute worker can be given a special queue to listen to,

or listen to the default queue. For more information on setting up a custom queue and compute worker, see:

Queue Management

Compute Worker Management and Setup

4.5.3 Submission Container

The submission container is the container that participant's submissions get ran in. The image used to create this container is either the Codabench

default if the organizer's haven't specified an image, or the custom image they specified in the competition. The default docker image is codalab/

codalab-legacy:py37 . Organizers can specify their own image using either the YAML file or the editor.

This container is also created with some specific directories, some of which are only available at specific steps of the run. For example, generally for

a submission there are 2 steps. The prediction step (If the submission needs to make predictions) and the scoring step, where the predictions are

scored against the truth reference data.

Here are the following directories:

/app/input_data Where input data will be (Only exists if input data is supplied for the task)

/app/output Where all submission output should go (Should always exist)

/app/ingestion_program Where the ingestion program files should exist (Only available in ingestion)

/app/program Where the scoring program and/or the ingestion program should be located (Should always exist)

/app/input Where any input for this step should be. (I.E: Previous predictions from ingestion for scoring. Only exists on scoring step)

/app/input/ref Where the reference data should live (Not available to submissions. Only available on scoring step.)

/app/input/res Where predictions/output from the prediction step should live. (Only available on scoring step)

/app/shared Where any data that needs to be shared between the ingestion program and submission should exist. (Only available on scoring

steps.)

/app/ingested_program Where submission code should live if it is a code submission. (Only available in ingestion)

•

•

•

•

•

•

•

•

•

•

•

4.5 Submission Docker Container Layout

- 123/173 - Apache-2.0

4.6 Backups - Automating Creation and Restoring

Codabench has a custom command that uploads a database backup, and copies it to the storage you are using under /backups . We'll see how to

execute and automate that command, and how to restore from one of these backups in the event of a failure.

4.6.1 Creating Backups

Create

Upload

There's a custom command on codabench that we use to upload database backups to storage. It should be accessible from inside the Django

container (docker compose exec django bash) with python manage.py upload_backup <backup_path> . It takes an argument backup_path which

is the path relative to your backup folder, codabench/backups and storage bucket, /backups . For instance if I pass it as 2022/$DUMP_NAME.dump , the

backup should happen in codabench/backups/2022/$DUMP_NAME.dump and will be uploaded to /backups/2022/$DUMP_NAME.dump in your storage

bucket.

4.6.2 Scheduling Automatic Backups

To schedule automatic backups, we're going to schedule a daily cronjob. To start, open the cron editor in a shell with crontab -e .

Add a new entry like so, with the correct path to pg_dump.py :

You should confirm this backup process works by setting some known cronjob time a few minutes in the future and see the dump in storage.

Once done, save and quit the crontab editor, and verify your changes held by listing out cronjobs with crontab -l . You should see your new crontab

entry.

4.6.3 Restoring From Backup

Re-install Codabench according to the documentation here: Codabench Installation.

Once Codabench is re-installed and working, we're ready to restore our database backup. Upload the database backup to the webserver. It should go

under the codabench install folder in the /backups directory. For example your path might look like: /home/users/ubuntu/codabench/backups

Once the backup is located in the /backups folder, you'll want to get into the postgres container (docker compose exec db bash). Make sure you

know your DB_NAME , DB_USERNAME , and DB_PASSWORD variables from your .env.

You can restore two ways. The first would be manually dropping the db, re-creating it, then using pg_restore to restore the data:

Or, you can let pg_restore do that for you with a couple of flags/arguments:

DB_NAME=
DB_USERNAME=
DB_PASSWORD=
DUMP_NAME=
docker exec codabench-db-1 bash -c "PGPASSWORD=$DB_PASSWORD pg_dump -Fc -U $DB_USERNAME $DB_NAME > /app/backups/$DUMP_NAME.dump"

@daily /home/ubuntu/codabench/bin/pg_dump.py

Inside the database container

dropdb $DB_NAME -U $DB_USERNAME
createdb $DB_NAME -U $DB_USERNAME
pg_restore -U $DB_USERNAME -d $DB_NAME -1 /app/backups/<filename>.dump

Inside the database container

pg_restore --verbose --clean --no-acl --no-owner -h $DB_HOST -U $DB_USERNAME -d $DB_NAME /app/backups/<filename>.dump

4.6 Backups - Automating Creation and Restoring

- 124/173 - Apache-2.0

The arguments --no-acl & --no-owner may be useful if you're restoring as a non-root user. The owner argument is used for: Do not output

commands to set ownership of objects to match the original database.

The ACL argument is for: Prevent dumping of access privileges (grant/revoke commands).

After running pg_restore successfully without errors, you should find everything has been restored.

4.6.3 Restoring From Backup

- 125/173 - Apache-2.0

4.7 Submission Process Overview

Source:

graph TD
A((User Submission))
B{{Codalab Front End}}
C(Clientside Javascript)
D[Codalab API]
E[Codalab Back End]
F{{Compute Worker}}

A-->B
B-->C
C-->B
C-->D
D-->C
D-->E
E-->D

4.7 Submission Process Overview

- 126/173 - Apache-2.0

https://mermaidjs.github.io/mermaid-live-editor/#/edit/eyJjb2RlIjoiZ3JhcGggVERcbkEoKFVzZXIgU3VibWlzc2lvbikpXG5Ce3tDb2RhbGFiIEZyb250IEVuZH19XG5DKENsaWVudHNpZGUgSmF2YXNjcmlwdClcbkRbQ29kYWxhYiBBUEldXG5FW0NvZGFsYWIgQmFjayBFbmRdXG5Ge3tDb21wdXRlIFdvcmtlcn19XG5cbkEtLT5CXG5CLS0-Q1xuQy0tPkJcbkMtLT5EXG5ELS0-Q1xuRC0tPkVcbkUtLT5EXG5FLS0-fFJhYmJpdE1RfEZcbkYtLT58V2ViIFNvY2tldHMgJiBSZXN1bHRzfEUiLCJtZXJtYWlkIjp7InRoZW1lIjoiZGVmYXVsdCJ9fQ

4.7.1 Overview:

When making a submission to Codabench, the website uses a client-side javascript to send the submission file along with proper details to an API

point for submissions.

Once the API receives the new submission, Codabench's back-end fires off a Celery task through RabbitMQ.

This task is picked up by a Codabench Compute Worker listening in on the associated RabbitMQ. The Compute Worker starts processing the data.

The compute worker begins execution by creating the container the submission will run in using the organizer's specified docker image for the

competition.

Once the container is created, the scoring program and other necessary organizer and user supplied binaries are executed to produce results.

While the submission is processing, communication back to the Codabench instance is possible through web-sockets.

Once the submission is done processing, it moves the output to the proper folders, and the compute worker posts these scores (if found) to the

Codabench API.

From here, the submission is done processing and is marked as failed/finished. If at any part of the processing step (Scoring/Ingestion step of the

submission) an exception is raised, the compute worker will halt and send all current output.

E-->|RabbitMQ|F
F-->|Web Sockets & Results|E

•

•

•

•

•

•

•

4.7.1 Overview:

- 127/173 - Apache-2.0

4.8 Robot Submissions

This script is designed to test the Robot Submissions feature. Robot users should be able to submit to bot-enabled competitions without being

admitted as a participant.

This article will explain how to make a robot submission on your local computer, and how to present the results on the Leaderboard.

4.8.1 Pre-requisite

Python 3

Demo bundle: autowsl

Github download URL

Robot submission sample script here: link

Brief description for demo bundle:

code_submission : It contains the sample bundle for the code submission and the code solution for the submission.

auto_wsl_code_submission.zip :This bundle is used for making submission.

new_v18_code_mul_mul.zip : The bundle is multiple phases, each phase has multiple tasks, and between these tasks, they share the same scoring

program, that is, there is no need to copy multiple scoring program for hardcode.

new_v18_code_mul_mul_sep_scoring.zip : This bundle is multiple phases, multiple tasks under each phase share a scoring program that is

exclusive to their particular phase.

new_v18_code_sin_mul.zip : This is the sample bundle of a single phase multi-task that shares the same scoring program.

dataset_submission : It contains the sample bundle for data submission and the corresponding dataset solution for submission.

AutoWSL_dataset_submission.zip : This is the bundle used for dataset submissions.

new_v18_dataset_mul_mul.zip :This is a multi-phase, each phase has multiple tasks below the sample bundle, multiple tasks, using the same

scoring program, do not need to copy multiple scoring program for hardcode

new_v18_dataset_mul_mul_sep_scoring.zip : This is a multi-phase, each phase has multiple tasks below the sample bundle, the task between

the different phases, using a different scoring program, that is, each phase has its own independent scoring program.

new_v18_dataset_sin_mul.zip : This is a sample bundle of single-phase multi-task commit datasets.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.8 Robot Submissions

- 128/173 - Apache-2.0

https://github.com/codalab/competitions-v2/tree/codabench/sample_bundle/src/tests/functional/test_files/AutoWSL_sample
https://github.com/codalab/competitions-v2/tree/develop/docs/example_scripts

4.8.2 Getting started

Upload a bundle

Use the sample bundle provided above to upload the bundle and create a competition

Set the competition to allow robot submissions

On the created competition page, click the EDIT button

Then click on the Participation tab, then scroll down to the bottom and click on Allow robot submission and click SAVE button.

4.8.2 Getting started

- 129/173 - Apache-2.0

After the above steps are done, the Competition is allowed for making robot submission.

Set yourself to Is bot

Go to the backend administration page, PROFILES tab bar below the user

4.8.2 Getting started

- 130/173 - Apache-2.0

Check the is bot box, click save. You can now proceed with your robot submissions.

Change CODALAB_URL address

Change CODALAB_URL address in following scripts: get_competition_details.py , example_submission.py , get_submission_details.py

CODALAB_URL = 'https://www.codabench.org/'

Find scripts at docs/example_scripts

4.8.2 Getting started

- 131/173 - Apache-2.0

Choose the competition

Run the following command on the command line: python3 get_competition_details.py What you're about to see is something like this

Choose the ID of the competition you are interested in, for example 127.

4.8.2 Getting started

- 132/173 - Apache-2.0

Run the script again with the competition ID as a parameter python3 get_competition_details.py 127 Then you will see the following

You can select the phase ID you're interested in, then use it as the second argument and run the script again, this time you'll get the task information

associated with that phase. python3 get_competition_details.py 127 215

Making submission

Inside the example_submission.py script, configure these options:

CODALAB_URL can be changed if not testing locally.

USERNAME and PASSWORD should correspond with the user being tested.

PHASE_ID should correspond with the phase being tested on.

TASK_LIST can be used to submit to specific tasks on a phase. If left blank, the submission will run on all tasks.

SUBMISSION_ZIP_PATH You can fill in the absolute path of the submission directly.

•

•

•

•

•

4.8.2 Getting started

- 133/173 - Apache-2.0

The idea here is that I'm going to test all the tasks below the competition with phase ID 215 . Then run the script. python3 example_submission.py

You can see that you have successfully submitted the submission bundle.

View submission details

Configure the get_submission_details.py options before running.

CODALAB_URL can be changed if not testing locally.

USERNAME and PASSWORD should correspond with the user being tested. Run the get_submission_details .py script with the ID of the phase

containing the desired submission as the first argument.

Since we chose 215 for our phase ID above, we'll choose 215 here.

Then run the script. python3 get_submission_details.py 215

Find the ID of the desired submission. For example, 542 .

•

•

4.8.2 Getting started

- 134/173 - Apache-2.0

Then run the script. python3 get_submission_details.py 215 542

4.8.2 Getting started

- 135/173 - Apache-2.0

Finally

Finally, you can go to the competition page, add your submission, and add it to the Leaderboard!

4.8.2 Getting started

- 136/173 - Apache-2.0

On the Leaderboard, you can see the score details of each of your tasks.

4.8.3 Using the Scripts:

Setup:

Create a competition with robot submissions enabled

Example competition bundle

•

4.8.3 Using the Scripts:

- 137/173 - Apache-2.0

https://github.com/codalab/competitions-v2/blob/develop/src/tests/functional/test_files/competition.zip

Create a user and enable the bot user flag on the Django admin page.•

4.8.3 Using the Scripts:

- 138/173 - Apache-2.0

get_competition_details.py:

Inside the get_competition_details.py script, configure these options:•

4.8.3 Using the Scripts:

- 139/173 - Apache-2.0

https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/get_competition_details.py
https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/get_competition_details.py

CODALAB_URL can be changed if not testing locally.

Run the get_competition_details script with no arguments.

Find the competition you want to test on.

Run the get_competition_details script again with the competition ID as the only argument.

Find the phase you want to test on.

If you want to use the task selection feature, run the script again with the competition ID as the first argument and the phase ID as the second

argument.

Select the task you would like to run your submission on.

Use the phase ID and task IDs to configure example_submission.py .

example_submission.py:

Inside the example_submission.py script, configure these options:

CODALAB_URL can be changed if not testing locally.

USERNAME and PASSWORD should correspond with the user being tested.

PHASE_ID should correspond with the phase being tested on.

TASK_LIST can be used to submit to specific tasks on a phase. If left blank, the submission will run on all tasks.

SUBMISSION_ZIP_PATH should be changed if testing on anything but the default "Classify Wheat Seeds" competition. An example submission can

be found here.

Run this script in a python3 environment with requests library installed.

get_submission_details.py

Configure the get_submission_details.py options before running.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.8.3 Using the Scripts:

- 140/173 - Apache-2.0

https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/example_submission.py
https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/example_submission.py
https://github.com/codalab/competitions-v2/blob/develop/src/tests/functional/test_files/submission.zip
https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/get_submission_details.py
https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/get_submission_details.py

CODALAB_URL can be changed if not testing locally.

USERNAME and PASSWORD should correspond with the user being tested.

Run the get_submission_details.py --phase <id> script with the ID of the phase containing the desired submission.

Find the ID of the desired submission.

Run the get_submission_details.py --submission <id> script with the desired submission ID.

The output of the script should be a submission object and a submission get_details object. This data can be used view scores, get prediction

results, ect.

Run the get_submission_details.py --submission <id> -v to save a zip containing previous info plus the original submission and logs.

--output <PATH> can be used to choose where to save the zip file. Otherwise, it will be saved in the current directory.

rerun_submission.py

Robot users have the unique permission to rerun anyone's submission on a specific task. This enables clinicians to test pre-made solutions on private

datasets that exist on tasks that have no competition.

Configure the rerun_submission.py options before running.

CODALAB_URL can be changed if not testing locally.

USERNAME and PASSWORD should correspond with the user being tested.

Running the script

Create a competition that allows robots, and create a user marked as a robot user. Use that username and password below.

Get into a python3 environment with requests installed

Review this script and edit the applicable variables, like...

Execute the contents of this script with no additional command line arguments with the command shown below:

./rerun_submission.py

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

CODALAB_URL
USERNAME
PASSWORD
...

4.

4.8.3 Using the Scripts:

- 141/173 - Apache-2.0

https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/rerun_submission.py
https://github.com/codalab/competitions-v2/blob/develop/docs/example_scripts/rerun_submission.py

The script is built to assist the user in the selection of the submission that will be re-run.

After selecting a submission ID from the list shown in the previous step, add that ID to the command as a positional argument as shown below.

./rerun_submission.py 42

The script will assist the user in the selection of a task ID.

After selecting both a submission ID and a task ID, run the command again with both arguments to see a demonstration of a robot user re-running

a submission on a specific task.

e.g.

./rerun_submission.py 42 a217a322-6ddf-400c-ac7d-336a42863724

1.

1.

4.8.3 Using the Scripts:

- 142/173 - Apache-2.0

4.9 Running Tests

4.9.1 CircleCI

To simulate the tests run by CircleCI locally, run the following command:

4.9.2 Example competitions

The repo comes with a couple examples that are used during tests:

v2 test data

v1.5 legacy test data

Other Codalab Competition examples

https://github.com/codalab/competition-examples/tree/master/v2/

Without "end to end" tests
$ docker compose exec django py.test -m "not e2e"

"End to end tests" (a shell script to launch a selenium docker container)
$./run_selenium_tests.sh

If you are on Mac OSX it is easy to watch these tests, no need to install
anything just do:
$ open vnc://0.0.0.0:5900

And login with password "secret"

docker compose -f docker-compose.yml -f docker-compose.selenium.yml exec django py.test src/ -m "not e2e"

src/tests/functional/test_files/submission.zip
src/tests/functional/test_files/competition.zip

src/tests/functional/test_files/submission15.zip
src/tests/functional/test_files/competition15.zip

4.9 Running Tests

- 143/173 - Apache-2.0

https://github.com/codalab/competition-examples/tree/master/v2/

4.10 Automation

4.10.1 What and Why

It's useful to test various parts of the system with lots of data or many intricate actions. The selenium tests do this generally and are used as a guide

for this tutorial. One problem is that Selenium needs to launch an instance of a browser to control. Our tests do this inside a docker container and

uses a test database that doesn't persist as it cleans up after itself. We need to be able to control a live codabench session that is running. To do that

we install a driver locally which is normally only inside the selenium docker container during tests. It is specific to your browser so keep that in mind.

4.10.2 Virtualenv

You'll need a python virtual env as you don't want to be inside Django or you won't be able to launch a browser.

Virtualenv

I used 3.8.

Pyenv

4.10.3 Requirements

We have a couple extra things like webdriver-manager for getting a driver programmatically and selenium needs to be upgraded to use modern

client interface.

4.10.4 Automate competition creation

Main Selenium Docs

Install

Getting Started

python3 -m venv codabench
source ./codabench/bin/activate

pyenv install 3.8
pyenv virtualenv 3.8 codabench
pyenv activate codabench

pip install -r requitements.txt
pip install -r requitements.dev.txt
pip install webdriver-manager
pip install --upgrade selenium

import os, time
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager

Use `ChromeDriverManager` to ensure the `chromedriver` is installed and in PATH
service = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service)

... now use `driver` to control the local Chrome instance
driver.get("http://localhost/accounts/login")

Use CSS selectors to find the input fields and button
username_input = driver.find_element(By.CSS_SELECTOR, 'input[name="username"]')
password_input = driver.find_element(By.CSS_SELECTOR, 'input[name="password"]')
submit_button = driver.find_element(By.CSS_SELECTOR, '.submit.button')

Type the credentials into the fields
username_input.send_keys('bbearce')
password_input.send_keys('testtest')

Click the submit button
submit_button.click()

4.10 Automation

- 144/173 - Apache-2.0

https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/getting-started.html

comp_path = "/home/bbearce/Documents/codabench/src/tests/functional/test_files/competition_v2_multi_task.zip"
def upload_competition(competition_zip_path):

driver.get("http://localhost/competitions/upload")
file_input = driver.find_element(By.CSS_SELECTOR, 'input[ref="file_input"]')
file_input.send_keys(os.path.join(competition_zip_path))

for i in range(30):
upload_competition(comp_path)
time.sleep(5) # tune for your system

4.10.4 Automate competition creation

- 145/173 - Apache-2.0

4.11 Manual Validation

This is a checklist to follow in order to perform a manual validation of the platform's proper functioning. This is especially useful when validating a

"bump" pull request made by the dependabot, a fresh installation or any change in the code base.

Create a user account and login

Create a competition

Create a queue

Upload a submission

Check that the submission was processed (results, visualization tab, leaderboard)

Change/recover password

Delete user

Delete submission

Delete queue

Delete competition

Admin page

Look at the logs for any problematic messages (docker compose logs -f)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

4.11 Manual Validation

- 146/173 - Apache-2.0

4.12 Validation and deplyement of pull requests

4.12.1 1. Local testing and validation of the changes

Setup

Required: - "Maintain" role on the repository - A working local installation

Pull the changes, checkout the branch you are testing and deploy your local instance:

If necessary, migrate and collect static files (see this page).

If the branch with the changes is from an external repository, you can create a branch in Codabench's repository and make a first merging into this new

branch. Then, you'll be able to merge the new branch into master. This way, the automatic tests will be triggered.

EDIT: It may be possible to trigger the tests even if the branch is external. To be confirmed.

Testing

Here is the usual checklist in order to validate the pull request:

cd codabench
git pull
git checkout branch
docker compose up -d

Note

4.12 Validation and deplyement of pull requests

- 147/173 - Apache-2.0

The contributor may have provided guidelines for testing that you should follow. In addition to this:

Testing must be thorough, really trying to break the new changes. Try as many use cases as possible. Do not trust the contributor.

In addition to the checklist of the PR, you can follow this checklist to check that the basic functionalities of the platform are still working: manual

validation

Merging

Once everything is validated, merge the pull request. If there are many minor commits, use "squash and merge" to merge them into one.

You can then safely click on Delete branch . It is a good practice to keep the project clean.

4.12.2 Update the test server

Here are the necessary steps to update the Codabench server to reflect the last changes. We prodive here general guidelines that work for both the

test server and the production server.

Log into the server

Replace codabench-server by your own SSH host setting, or the IP address of the server.

Make sure to log in as the user that deployed the containers.

•

•

ssh codabench-server
cd /home/codalab/codabench

Note

4.12.2 Update the test server

- 148/173 - Apache-2.0

Pull the last change

If you are deploying on a test server, you can use the develop branch.

If you are deploying on a Production server, we strongly adivse on using the master branch.

Restart Django

If docker compose does not exist, use docker-compose .

Database migration

Collect static files

Final testing

Access the platform from your browser

You may need a hard refresh (Maj + R) so the changes take effect.

Check that everything is working fine, the new changes, and the basic functionalities of the platform

4.12.3 Merge develop into master

Once some pull requests (~3 - 10) were merged into develop , we can prepare a merge into master . Simply create a new pull request from Github

interface, selecting master as the base branch:

Tip

•

•

docker compose down
git status
git pull
docker compose up -d

docker compose stop django
docker compose rm django
docker compose create django
docker compose start django

docker compose exec django ./manage.py migrate

Do not use makemigrations

Remark: we need to solve the migration files configuration. In the meantime, makemigrations --merge may be needed.

docker compose exec django ./manage.py collectstatic --noinput

•

•

•

4.12.3 Merge develop into master

- 149/173 - Apache-2.0

https://github.com/codalab/codabench/issues/1109

In the text of the PR, link all relevant PR made to develop, and indicate the URL of the test server. Example: https://github.com/codalab/codabench/

pull/1166

4.12.4 Update the production server

Same procedure as Update the test server, but on the production server.

Do not forget to access the platform and perform a final round of live testing after the deployment.

4.12.5 Creating a Release

Once the develop branch has been merged into master, it is possible to use the Github interface to tag the commit of the merge and create a release

containing all the changes as well as manual interventions if needed.

For this, you will need to go to the release page and click on Draft a new release

Afterwards, you click on Choose a tag and enter the tag you want to create (in this exemple, 1.17.0 which doesn't exist yet)

Tip

4.12.4 Update the production server

- 150/173 - Apache-2.0

https://github.com/codalab/codabench/pull/1166
https://github.com/codalab/codabench/pull/1166
https://github.com/codalab/codabench/releases

You can then choose the targeted branch to create the tag on (master in our case) and then click on Generate release notes Github will

automatically generate releases based on the new commits compared to the last tag.

You can then change the text format however you like, as well as add things like Manual Intervention if there are any.

When you are done, you publish the release.

4.12.6 TODO

Add a note about:

Merging the github action PR to update the release tag•

4.12.6 TODO

- 151/173 - Apache-2.0

4.13 Upgrading Codabench

4.13.1 Index

Upgrade Codabench

Manual interventions

You can find here various manual intervention needed depending on which version you are upgrading from:

Upgrade RabbitMQ (version < 1.0.0)

Create new logos for each competition (version < 1.4.1)

Worker Docker Image manual update (version < 1.3.1)

Add line into .env for default queue worker duration (version < 1.7.0)

Uncomment a line in your .env file (version < 1.8.0)

Rebuilding all docker images (version < 1.9.2)

Move the last storage_inconsistency files from logs folder to var logs folder (version < 1.12.0)

Submissions and Participants Counts (version < 1.14.0)

Homepage counters (version < 1.15.0)

User removal (version < 1.17.0)

Database size Fix (version < 1.18.0)

cd codabench
git pull
docker compose build && docker compose up -d
docker compose exec django ./manage.py migrate
docker compose exec django ./manage.py collectstatic --noinput

•

•

•

•

•

•

•

•

•

•

•

4.13 Upgrading Codabench

- 152/173 - Apache-2.0

4.13.2 Upgrade RabbitMQ (version < 1.0.0)

Backup RabbitMQ settings

Go to http://<instance_ip>:<rabbitmq_admin_port>/api/definitions and save the response (enter login and password as configured in .env)

For example:

Stop and remove RabbitMQ's container and data

Switch to the latest RabbitMQ version

Add WORKER_CONNECTION_TIMEOUT=<your timeout value> into your .env file with your custom value. Then execute:

Restore the backup settings

Connect to the instance by ssh and upload your json file at 1st step, execute :

You can check if it succeeded by doing the 1st step.

Verify that your submission can be processed.

This intervention is needed when upgrading from a version equal or lower than v1.0.0

Do not submit any submission and wait until all submissions are processed

docker compose stop rabbit && docker compose rm rabbit
sudo rm -rvf var/rabbit/*

git pull
docker compose build rabbit
docker compose up -d

curl -u <login>:<password> -H "Content-Type: application/json" -X POST -T <your definitions file>.json http://localhost:<rabbit_admin_port>/api/definitions

4.13.2 Upgrade RabbitMQ (version < 1.0.0)

- 153/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.0.0

4.13.3 Create new logos for each competitions (version < 1.4.1)

In order to create a "logo icon" for each existing competition

Shell into django

Get competitions that don't have logo icons

Then run this script

This intervention is needed when upgrading from a version equal or lower than v1.4.1

1.

docker compose exec django bash
python manage.py shell_plus --plain

2.

import io, os
from PIL import Image
from django.core.files.base import ContentFile
comps_no_icon_logo = Competition.objects.filter(logo_icon__isnull=True)
all = Competition.objects.all()
len(Competition.objects.all())
len(comps_no_icon_logo)

3.

for comp in comps_no_icon_logo:
try:

comp.make_logo_icon()
comp.save()

except Exception as e:
print(f"An error occurred: {e}")
print(comp)

4.13.3 Create new logos for each competitions (version < 1.4.1)

- 154/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.4.1

4.13.4 Worker docker image manual update (version < 1.3.1)

To update your worker docker image, you can launch the following code in the terminal on the machine where your worker is located.

This intervention is needed when upgrading from a version equal or lower than v1.3.1

docker stop compute_worker
docker rm compute_worker
docker pull codalab/competitions-v2-compute-worker:latest
docker run \

-v /codabench:/codabench \
-v /var/run/docker.sock:/var/run/docker.sock \
-d \
--env-file .env \
--name compute_worker \
--restart unless-stopped \
--log-opt max-size=50m \
--log-opt max-file=3 \
codalab/competitions-v2-compute-worker:latest

4.13.4 Worker docker image manual update (version < 1.3.1)

- 155/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.3.1

4.13.5 Add line in .env file for default worker queue duration (version < 1.7.0)

You will need to add the following line into your .env file

This will change the maximum time a job can run on the default queue of your instance, as noted here

This intervention is needed when upgrading from a version equal or lower than v1.7.0

.env

MAX_EXECUTION_TIME_LIMIT=600 # time limit for the default queue (in seconds)

4.13.5 Add line in .env file for default worker queue duration (version < 1.7.0)

- 156/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.7.0
https://github.com/codalab/codabench/pull/1154

4.13.6 Uncomment a line in your .env file (version < 1.8.0)

After the Caddy upgrade, you will need to uncomment a line in your .env file:

More information here

This intervention is needed when upgrading from a version equal or lower than v1.8.0

.env

TLS_EMAIL = "your@email.com"

4.13.6 Uncomment a line in your .env file (version < 1.8.0)

- 157/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.8.0
https://github.com/codalab/codabench/pull/1424

4.13.7 Rebuilding all docker images (version < 1.9.2)

Since we are now using Poetry, we need to rebuild all our docker images to include it.

You can achieve this by running the following commands :

If your machine has other images or containers that you want to keep, do not run docker system prune -af . Instead, manually delete all the images

related to codabench

More information (and alternative commands) here

This intervention is needed when upgrading from a version equal or lower than v1.9.2

Warning

docker compose build && docker compose up -d
docker system prune -a

4.13.7 Rebuilding all docker images (version < 1.9.2)

- 158/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.9.2
https://github.com/codalab/codabench/pull/1416

4.13.8 Move the latest storage_inconsistency files from the logs folder to var/logs (version < 1.12.0)

You will need to move the last storage_inconsistency files from /logs folder to /var/logs/ folder.

You will also need to rebuild the celery image because of a version change that's needed.

More information here

This intervention is needed when upgrading from a version equal or lower than v1.11.0

cd codabench
cp -r logs/* var/logs

docker compose down
docker images # Take the ID of the celery image
docker rmi *celery_image_id*
docker compose up -d

4.13.8 Move the latest storage_inconsistency files from the logs folder to var/logs (version < 1.12.0)

- 159/173 - Apache-2.0

https://github.com/codalab/codabench/releases/tag/v1.11.0
https://github.com/codalab/codabench/pull/1575

4.13.9 Submissions and Participants count (version < 1.14.0)

1. Re-build containers

2. Migration

3. Update counts for all competitions

Bash into django console

Import and call the function

4. Feature some competitions in home page

There are two ways to do it: 1. Use Django admin -> click the competition -> scroll down to is featured filed -> Check/Uncheck it 2. Use competition ID

in the django bash to feature / unfeature a competition

After upgrading from Codabench <1.14, you will need to follow these steps to compute the submissions and participants counts on the

competition pages. See this for more information

docker compose build && docker compose up -d

docker compose exec django ./manage.py migrate

docker compose exec django ./manage.py shell_plus

from competitions.submission_participant_counts import compute_submissions_participants_counts
compute_submissions_participants_counts()

docker compose exec django ./manage.py shell_plus

comp = Competition.objects.get(id=<ID>) # replace <ID> with competition id
comp.is_featured = True # set to False if you want to unfeature a competition
comp.save()

4.13.9 Submissions and Participants count (version < 1.14.0)

- 160/173 - Apache-2.0

https://github.com/codalab/codabench/pull/1669

4.13.10 Homepage Counters (version < 1.15.0)

Re-build containers

Update the homepage counters (to avoid waiting 1 day)

After upgrading from Codabench <1.15, you will need to follow these steps to compute the homepage counters. See this for more information

1.

docker compose build && docker compose up -d

1.

docker compose exec django ./manage.py shell_plus

from analytics.tasks import update_home_page_counters
eager_results = update_home_page_counters.apply_async()

4.13.10 Homepage Counters (version < 1.15.0)

- 161/173 - Apache-2.0

https://github.com/codalab/codabench/pull/1694

4.13.11 User Removal (version < 1.17.0)

After upgrading from Codabench <1.17, you will need to perform a Django migration (#1715, #1741)

docker compose exec django ./manage.py migrate

4.13.11 User Removal (version < 1.17.0)

- 162/173 - Apache-2.0

https://github.com/codalab/codabench/pull/1715
https://github.com/codalab/codabench/pull/1741

4.13.12 Database size fix (version < 1.18.0)

You need to stop the database from being changed while running these commands. They might take time to complete depending on the size of your

database.

Start maintenance mode:

1. DJANGO MIGRATION (1774, 1752)

2. RESET USER QUOTA FROM BYTES TO GB (1749)

3. IMPORTANT FOR FILE SIZES CLEANUP (1752)

We have some critical changes here so before deployment we should run the following 3 blocks of code to get the last ids of Data , Submission and

SubmissionDetail

Then, in the shell_plus:

After we have the latest ids, we should deploy and run the 3 blocks of code below to fix the sizes i.e. to convert all kib to bytes to make everything

consistent. For new files uploaded after the deployment, the sizes will be saved in bytes automatically that is why we need to run the following code

for older files only.

Warning

touch maintenance/maintenance.on

docker compose exec django ./manage.py migrate

docker compose exec django ./manage.py shell_plus

from profiles.quota import reset_all_users_quota_to_gb
reset_all_users_quota_to_gb()

Convert all 16 GB quota into 15 GB
from profiles.models import User
users = User.objects.all()
for user in users:

Reset quota to 15 if quota is between 15 and 20
Do not reset quota for special users like adrien
if user.quota > 15 and user.quota < 20:

user.quota = 15
user.save()

Get the maximum ID for Data
from datasets.models import Data
latest_id_data = Data.objects.latest('id').id
print("Data Last ID: ", latest_id_data)

Get the maximum ID for Submission
from competitions.models import Submission
latest_id_submission = Submission.objects.latest('id').id
print("Submission Last ID: ", latest_id_submission)

Get the maximum ID for Submission Detail
from competitions.models import SubmissionDetails
latest_id_submission_detail = SubmissionDetails.objects.latest('id').id
print("SubmissionDetail Last ID: ", latest_id_submission_detail)

Run the conversion only for records with id <= latest_id
from datasets.models import Data
for data in Data.objects.filter(id__lte=latest_id_data):

if data.file_size:
data.file_size = data.file_size * 1024 # Convert from KiB to bytes
data.save()

Run the conversion only for records with id <= latest_id
from competitions.models import Submission
for sub in Submission.objects.filter(id__lte=latest_id_submission):

updated = False # Track if any field is updated

4.13.12 Database size fix (version < 1.18.0)

- 163/173 - Apache-2.0

https://github.com/codalab/codabench/pull/1774
https://github.com/codalab/codabench/pull/1752
https://github.com/codalab/codabench/pull/1749
https://github.com/codalab/codabench/pull/1752

Then, do not forget to stop maintenance mode:

if sub.prediction_result_file_size:
sub.prediction_result_file_size = sub.prediction_result_file_size * 1024 # Convert from KiB to bytes
updated = True

if sub.scoring_result_file_size:
sub.scoring_result_file_size = sub.scoring_result_file_size * 1024 # Convert from KiB to bytes
updated = True

if sub.detailed_result_file_size:
sub.detailed_result_file_size = sub.detailed_result_file_size * 1024 # Convert from KiB to bytes
updated = True

if updated:
sub.save()

Run the conversion only for records with id <= latest_id
from competitions.models import SubmissionDetails
for sub_det in SubmissionDetails.objects.filter(id__lte=latest_id_submission_detail):

if sub_det.file_size:
sub_det.file_size = sub_det.file_size * 1024 # Convert from KiB to bytes
sub_det.save()

rm maintenance/maintenance.on

4.13.12 Database size fix (version < 1.18.0)

- 164/173 - Apache-2.0

5. Newsletters Archive

5.1 2024

5.1.1 CodaLab in 2024

A Year of Breakthroughs and New Horizons with Codabench

Welcome to the first edition of CodaLab’s newsletter! This year has been full of novelty, success, and scientific progress. The platform is breaking

records of participation and number of organized competitions, and Codabench, the new version of CodaLab, had a very promising launch. Let’s dive

into more details.

5.1.2 Unprecedented engagement

In October, Codabench has registered its 10,000th user! From about 100 daily submissions in January, it is now more than 500 daily submissions

that are handled on the servers. In 2024, more than 20,000 new users have registered on CodaLab, whereas more than 12,000 on Codabench.

249 public competitions have been created on CodaLab, whereas 193 on Codabench: +15% of total competitions of both platforms compared to

2023. CodaLab continues to handle a large number of submissions, as many past competitions remain active even after they have officially ended:

240,000 submissions on CodaLab whereas 83,000 on Codabench.

Contributors community is very active with 143 pull requests this year. Since the platform is still relatively new, the primary focus has been on bug

fixes, security and performance enhancements, and administrative features, accounting for approximately two-thirds of the pull requests.

Nevertheless, we are keen on improving the experience for both participants and organizers. We have set a versioning and a release-notes follow-up

to give more visibility to the platform evolution and maturity.

5. Newsletters Archive

- 165/173 - Apache-2.0

https://codabench.org/
https://codalab.lisn.fr/

5.1.3 Introducing Codabench

Codabench, the modernized version of CodaLab, was released in summer 2023, and presented at JCAD days in November 2024! Codabench platform

software is now concentrating all development effort of the community. In addition to CodaLab features, it offers improved performance, live logs,

more transparency, data-centric benchmarks and more!

We warmly encourage you to use codabench.org for all your new competitions and benchmarks. Note that CodaLab bundles are compatible with

Codabench, easing the transition, as explained in the following Wiki page: How to transition from CodaLab to Codabench

CodaLab and Codabench are hosted on servers located at Paris-Saclay university, maintained by LISN lab.

5.1.4 Spotlight on competitions

The most popular competition this year, featuring 520 participants, was the SemEval task Bridging the Gap in Text-Based Emotion Detection. The

task of this competition focused on identifying the emotion that most people would associate with a speaker based on a given sentence or short text

snippet.

The competition with the highest reward, a prize pool of $100,000, was the Global Artificial Intelligence Championships, track Maths 2024, a

pioneering contest that aimed to advance the development of artificial intelligence tools for solving advanced mathematical problems across

multiple levels of difficulty (full report here).

5.1.3 Introducing Codabench

- 166/173 - Apache-2.0

https://codabench.org/
https://codalab.lisn.fr/
https://www.canal-u.tv/chaines/jcad/codalab-competitions-and-codabench-open-source-platforms-to-organize-scientific
https://codabench.org/
https://www.universite-paris-saclay.fr/
http://lisn.upsaclay.fr/
https://www.codabench.org/competitions/3863
https://www.codabench.org/competitions/2325/
https://www.agiodyssey.org/pdf/GAIC_2024_Report.pdf

Codabench featured interesting NeurIPS 2024 challenges:

The LLM Privacy Challenge, where participants were divided into two teams: Red Team and Blue Team, each one aiming at developing attack and

defense approaches for data privacy in LLMs.

Fair Universe - Higgs Uncertainy Challenge, exploring uncertainty-aware AI techniques for High Energy Physics (HEP).

The Concordia Challenge, focusing on improving the cooperative intelligence of AI systems: promise-keeping, negotiation, reciprocity, reputation,

partner choice, compromise, and sanctioning.

The Erasing the Invisible Challenge, where the task is to remove invisible watermarks from images, while preserving the overall image quality.

Codabench also hosted the NeurIPS 2024 Checklist Assistant, a self-service tool for the NeurIPS 2024 checklist. This verification assistant helps

authors confirm their papers’ compliance and submit improved versions based on the Assistant’s feedback. For more details check out the blog

post and the experiment results.

Last but not least, Codabench featured several competitions in the fields of medicine and biology, such as the Dental CBCT Scans, Panoramic X-ray

Images, Butterfly Hybrid Detection, and Monitoring Age-related Macular Degeneration Progression In Optical Coherence Tomography.

We’d like to thank the whole community for these exceptional scientific contributions. You can explore more challenges in the public listing.

5.1.5 What about the future?

We always develop new features to serve the state-of-the art of Machine Learning science. We plan to invest effort in handling medical data,

improving federated learning use-cases, and allowing human-in-the loop feedback for better AI experience.

The platform interface will also be improved for better visibility and facilitated re-use of datasets, tasks or solutions generated through it.

Keep in touch and give us feedback on your experience on Codabench !

5.1.6 Community

Reminder on our communication tools:

Join our google forum to emphasize your competitions and events

Contact us for any question: info@codalab.org

Write an issue on github about interesting suggestions

Please cite one of these papers when working with our platforms:

5.1.7 Last words

Thank you for reading the first edition of our newsletter. We look forward to sharing more exciting updates, competitions, and breakthroughs with you

soon. Until then, keep exploring, keep competing, and stay inspired!

•

•

•

•

•

•

•

•

@article{codabench,
 title = {Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform},
 author = {Zhen Xu and Sergio Escalera and Adrien Pavão and Magali Richard and
 Wei-Wei Tu and Quanming Yao and Huan Zhao and Isabelle Guyon},
 journal = {Patterns},
 volume = {3},
 number = {7},
 pages = {100543},
 year = {2022},
 issn = {2666-3899},
 doi = {https://doi.org/10.1016/j.patter.2022.100543},
 url = {https://www.sciencedirect.com/science/article/pii/S2666389922001465}
}

@article{codalab_competitions_JMLR,
 author = {Adrien Pavao and Isabelle Guyon and Anne-Catherine Letournel and Dinh-Tuan Tran and Xavier Baro and Hugo Jair Escalante and Sergio Escalera and
Tyler Thomas and Zhen Xu},
 title = {CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges},
 journal = {Journal of Machine Learning Research},
 year = {2023},
 volume = {24},
 number = {198},
 pages = {1--6},
 url = {http://jmlr.org/papers/v24/21-1436.html}
}

5.1.5 What about the future?

- 167/173 - Apache-2.0

https://llm-pc.github.io/
https://www.codabench.org/competitions/3283/
https://www.codabench.org/competitions/3288/
https://www.codabench.org/competitions/2977/
https://www.codabench.org/competitions/3888/
https://www.codabench.org/competitions/3857/
https://www.codabench.org/competitions/2338/
https://blog.neurips.cc/2024/05/07/soliciting-participants-for-the-neurips-2024-checklist-assistant-study/
https://blog.neurips.cc/2024/05/07/soliciting-participants-for-the-neurips-2024-checklist-assistant-study/
https://blog.neurips.cc/2024/12/10/results-of-the-neurips-2024-experiment-on-the-usefulness-of-llms-as-an-author-checklist-assistant-for-scientific-papers/
https://www.codabench.org/competitions/3025/
https://www.codabench.org/competitions/3024/
https://www.codabench.org/competitions/3024/
https://www.codabench.org/competitions/3764/
https://www.codabench.org/competitions/2852/
https://www.codabench.org/competitions/public/?page=1
https://groups.google.com/g/codalab-competitions
https://github.com/codalab/codabench

5.1.7 Last words

- 168/173 - Apache-2.0

6. How you can contribue

6.1 Index

Use Codabench by either participating in a competition or hosting a new competition.

Find a bug? Got a feature request? Submit a GitHub issue.

P1 issues are the most important ones.

Submit pull requests on GitHub to implement new features or fix bugs (see the contributing section).

Improve this documentation.

Let others know about Codabench!

•

•

•

•

•

•

6. How you can contribue

- 169/173 - Apache-2.0

https://codabench.org/
https://github.com/codalab/codalab/issues?state=open
https://github.com/codalab/codabench/issues?q=is-3Aissue+is-3Aopen+label-3AP1

6.2 Contributing

6.2.1 Being a Codabench user

Create a user account on Codabench

Register on Codabench to this existing competition IRIS-tuto and make a submission (you can find the necessary files here):

sample_result_submission and sample_code_submission . See this page for more information.

Create your own private competition (you can find the necessary files here). See this page for more information.

6.2.2 Setting up a local instance of Codabench

Follow the tutorial in codabench wiki. According to your hosting OS, you might have to tune your environment file a bit. Try without enabling the

SSL protocol (doing so, you don't need a domain name for the server). Try using the embedded Minio storage solution instead of a private cloud

storage.

If needed, you can also look into How to deploy Codabench on your server

Using your local instance

Create your own competition and play with it. You can look at the output logs of each different docker container.

Setting you as an admin of your platform and visit the Django Admin menu.

6.2.3 Setting up an autonomous Compute Worker on a machine

Configure and launch a compute worker docker container.

Create a private Queue on your new own competition on the production server codabench.org

Assign your own compute-worker to this private queue instead of the default queue.

•

•

•

•

•

•

•

•

•

•

6.2 Contributing

- 170/173 - Apache-2.0

https://codabench.org
https://codabench.org
https://www.codabench.org/competitions/1115/
https://github.com/codalab/competition-examples/tree/master/codabench/iris
https://github.com/codalab/competition-examples/tree/master/codabench/

7. FAQ

7.1 General questions

7.1.1 What is Codabench for?

Codabench benchmarks are aimed at researchers, scientists and other professionals who want to track algorithm performance via benchmarks or

have participants participate in a competition to find the best solution to a problem. We run a free public instance at https://www.codabench.org/ and

the raw code is on Github.

7.1.2 Can CodaLab competitions be privately hosted?

Yes, you can host your own CodaLab instance on a private or hosted server (e.g. Azure, GCP or AWS). For more information, see how to deploy

Codabench on your server and local installation guide. However, most benchmark organizers do NOT need to run their own instance. If you run a

computationally demanding competition, you can hook up your own compute workers in the backend very easily.

7.1.3 How to change my username?

You cannot change your username BUT you can change your display name which will then be displayed instead of your username. To change your

display name, follow these instructions:

7.1.4 How to make a task public or use public tasks from other users?

Follow the detailed instruction here to know how you can make your task public and use other public tasks in your competitions.

7.1.5 How to delete my account?

Click on your account name on the top right of the website, then on account

7.2 Technical questions

7.2.1 Server Setup Issues

Many technical FAQ are already located in the deploy your own server instructions.

Questions already answered there:

Getting Invalid HTTP method in django logs.

I am missing some static resources (css/js) on front end.

CORS error when uploading bundle.

Logos don't upload from minio.

Compute worker execution with insufficient privileges

Securing Codabench and Minio

1. Login to Codabench
2. Click your username in the top right corner
3. Click `Edit Profile` in the list
4. Set a display name you want to use
5. Click `Submit` button to save changes

•

•

•

•

•

•

7. FAQ

- 171/173 - Apache-2.0

https://www.codabench.org/
https://github.com/codalab/codabench

7.2.2 A library is missing in the docker environment. What do to?

How does Codabench use dockers?

When you submit code to the Codabench platform, your code is executed inside a docker container. This environment can be exactly reproduced on

your local machine by downloading the corresponding docker image.

For participants

If you are a competition participant, contact the competition organizers to ask them if they can add the missing library or program. They can either

accept or refuse the request.

For organizers

If you are a competition organizer, you can select a different competition docker image. If the default docker image (codalab/codalab-

legacy:py37) does not suits your needs, you can either:

Select another image from DockerHub

Create a new image from scratch

Edit the default image and push it to your own DockerHub account

More information here.

7.2.3 Emails are not showing up in my inbox for registration

When deploying a local instance, the email server is not configured by default, so you won't receive the confirmation email during signup. In .env

towards the bottom you will find:

Uncomment and fill in SMPT server credentials. A good suggestion if you've never done this is to use sendgrid.

7.2.4 Robots and automated submissions?

What about robot policy, reckless, or malicious behavior? Codabench does not forbid the use of robots (bots) to access the website, provided that it

is not done with malicious intentions to disturb the normal use and jam the system. A user who abuses their rights by knowingly, maliciously, or

recklessly jamming the system, causing the system to crash, causing loss of data, or gaining access to unauthorized data, will be banned from

accessing all Codabench services.

•

•

•

•

•

.env

Uncomment to enable email settings
#EMAIL_BACKEND=django.core.mail.backends.smtp.EmailBackend
#EMAIL_HOST=smtp.sendgrid.net
#EMAIL_HOST_USER=user
#EMAIL_HOST_PASSWORD=pass
#EMAIL_PORT=587
#EMAIL_USE_TLS=True

7.2.2 A library is missing in the docker environment. What do to?

- 172/173 - Apache-2.0

https://sendgrid.com/

8. Contact Us

The preferred way is via posting a GitHub issue.

If you wish to get in touch with the community, you can use the Google Groups.

In case of emergency

Send us an email

•

•

•

8. Contact Us

- 173/173 - Apache-2.0

https://github.com/codalab/codabench/issues?state=open
https://groups.google.com/g/codalab-competitions
mailto:info@codalab.org
mailto:info@codalab.org

	Codabench Wiki
	1. Home
	1.1 Documentation
	1.2 Useful links

	2. Participants
	2.1 Participating in a Competition
	Signing up and updating your settings
	Registering for a Benchmark
	Making a Submission
	Viewing Benchmark Results

	3. Organizers
	3.1 Benchmark Creation
	3.1.1 Getting Started Tutorial
	Getting ready
	Create a competition
	Make changes
	Make a submission
	Publish your competition

	3.1.2 Advanced Tutorial
	Creating a Benchmark by Editor
	Step 1: Click on Management in the top right corner of Codabench's home page under Competitions.
	Step 2: Click on the Create button in the top right corner of Competition Management.
	Step 3: Fill in the Details tab content.
	Step 4: Fill in the Participant Tab.
	Step 5: Fill in the Pages Tab.
	Step 6: Fill in the Phases Tab.
	Step 7: Fill in the Leaderboard Tab.
	Step 8: Save and Publish the Benchmark

	Creating a Benchmark by Bundle
	Simple Version Example: CLASSIFY WHEAT SEEDS
	Step 1: Download bundle
	Step 2: Go to the benchmark upload page
	Step 3: Upload the bundle
	Step 4: View your new benchmark

	Benchmark Examples
	Iris
	AutoWSL
	Mini-AutoML

	How do I set up submission comments for multiple submissions?
	Steps
	Step 1: Click the edit button
	Step 2: Enable multiple submissions on leaderboard
	Step 3: Set up submission comment
	Step 4: Save all changes
	Step 5: Leave a comment before making submission
	Step 6: Check out the leaderboard

	3.1.3 How to Transition from Codalab to Codabench?
	What’s new in Codabench?
	Do I need to create a new account?
	Can I upload my old competition bundles to Codabench?
	How to move a competition from CodaLab to Codabench?
	How to create a competition from scratch on Codabench?
	Concluding remarks

	3.1.4 Competition Creation
	Bundle Upload
	GUI creation

	3.1.5 Competition Creation Form
	Details
	Participation
	Pages
	Phases
	Leaderboards
	Collaborators

	3.1.6 Competition Creation Bundle
	Backward compatibility

	3.1.7 Competition YAML Structure
	What is a Competition?
	Example Competition Bundle Layout:
	Example competition.yaml:
	Competition YAML
	Data Types And Their Role:
	Reference Data:
	Scoring Program
	Ingestion Program
	Input Data

	3.1.8 YAML Structure
	Versioning
	Competition Properties
	Required
	Optional

	Pages
	Required

	Phases
	Required
	Optional

	Tasks
	Required
	Optional

	Solutions
	Required

	Fact Sheet
	Optional
	Structure

	Leaderboards
	Leaderboard Details
	Required
	Optional

	Column Details
	Required
	Optional

	3.1.9 Competition Docker Image
	Default competition docker image
	Set up another image
	Building an image

	3.1.10 Dataset Competition Creation and participate instruction
	Overall process
	Differences from the code submission competition
	For the competition creator
	Input data
	Ingestion program

	For the competition participant

	3.1.11 Leaderboard Features
	Writing scores
	Computation
	Primary columns
	Submission rules
	Hidden Leaderboard
	Downloading Leaderboard Data

	3.1.12 Example Cancer Benchmarks
	Steps
	1. Decompressing the original bundle
	2. Decompressing ingestion_program_1.zip
	3. Modify the sub_ingestion.R file in the ingestion_program_1 folder.
	4.Save the changes and re-zip the ingestion_program_1 folder.
	5. Recompress the modified original bundle.
	6. Creating competition with compressed bundles
	7. Modify the default execution time

	Summary
	CODABENCH CANCER HETEROGENEITY DT#1 TRANSCRIPTOME PANCREAS
	CODABENCH CANCER HETEROGENEITY DT#2 METHYLOME PANCREAS
	CODABENCH CANCER HETEROGENEITY DT#3 IMMUNE CELL TYPES

	3.1.13 Public Tasks and Tasks Sharing
	Make a Task Public
	Example of task details:

	Search Public Tasks
	Use Public Tasks in Competitions

	3.1.14 Detailed Results and Visualization
	How to include figures
	Example

	3.2 Running a Benchmarks
	3.2.1 Benchmark Management & List Page
	Competition create button (Form)
	Competition create button (Upload)
	Competitions I'm running tab
	Competitions I'm in tab
	Publish competition button
	Edit competition button
	Delete competition button
	Competition link
	Competition organizer features
	Submissions
	Participants
	Copy competition secret URL

	3.2.2 Competition Detail Tab Navigation
	Get Started
	Phases
	My Submissions
	Results

	3.2.3 Ressource Management Submissions, Datasets/Programs, Tasks and Competition Bundles
	Submissions
	Datasets/Programs
	Tasks
	Create New Task
	Edit a Task
	Upload a Task
	Task Details

	Competition Bundles
	Quota and Cleanup

	3.2.4 Update programs or data
	A. Edit an existing Task
	1. Prepare the new dataset or program
	2. Upload the new dataset or program
	3. Update the Task used by your benchmark

	B. Create a new Task
	1. Prepare your new dataset / program
	2. Create Task
	Edit your benchmark

	3.2.5 Queue Management
	Show Public Queues
	Create Queue
	Action Buttons
	Eye Icon
	Document Icon
	Edit Icon
	Trash Icon

	Compute workers setup

	3.2.6 Compute Worker Management & Setup
	Install Docker
	Pull Compute Worker Image
	Start CPU worker
	Deprecated method (one liner)

	Start GPU worker
	NVIDIA-docker Wrapper (deprecated method)

	Check logs
	Cleaning up periodically
	Keep track of the worker
	Optional: put data directly inside the compute worker
	Building compute worker
	Worker management
	Update docker image

	3.2.7 Compute Worker Management with Podman
	Requirements for the host machine
	For GPU compute worker VM
	Compute worker installation
	For CPU container
	For GPU container

	3.2.8 Server Status
	How to access the interface

	4. Developers and Administrators
	4.1 Codabench Basic Installation Guide
	4.1.1 Pre-requisites
	Install Docker and Docker Compose

	4.1.2 Clone Repository
	4.1.3 Edit the settings (.env)
	For MacOS

	4.1.4 Start the service
	4.1.5 Run the following commands
	4.1.6 Advanced Configuration
	Testing
	SSL
	Validate user account on local instance
	Troubleshooting storage endpoint URL
	For Apple CPU (M1, M2 chips)
	Storage
	Remote Compute Workers

	4.1.7 Troubleshooting
	4.1.8 Online Deployement

	4.2 How to Deploy a Server
	4.2.1 Overview
	4.2.2 Preliminary steps
	4.2.3 Modify .env file configuration
	Submissions endpoint
	Using an IP address
	Using a domain name (DNS)

	Change default usernames and passwords

	4.2.4 Open Access Permissions for following port number
	4.2.5 Modify django-related configuration
	4.2.6 Start service
	4.2.7 Set public bucket policy to read/write
	4.2.8 Checkout the log of the specified container
	4.2.9 Stop service
	4.2.10 Disabling docker containers on production
	4.2.11 Link compute workers to default queue
	4.2.12 Personalize Main Banner
	4.2.13 Frequently asked questions (FAQs)
	Invalid HTTP method
	Missing static resources (css/js)
	CORS Error (could not upload bundle)
	Display logos error: logos don't upload from minio:
	Compute worker execution with insufficient privileges

	4.2.14 Securing Codabench and Minio
	Secure Minio with a reverse proxy
	Secure Minio on the same server as codabench (simpler)

	4.2.15 Workaround: MinIO and Django on the same machine with only the port 443 opened to the external network.

	4.3 Administrative Procedures
	4.3.1 Maintenance Mode
	4.3.2 Give superuser privileges to a user
	4.3.3 Migration
	4.3.4 Collect static files
	4.3.5 Delete POSTGRESDB and MINIO :
	Purge data
	See data we are going to purge
	Restart services and recreate database tables

	4.3.6 Feature competitions in home page
	4.3.7 Shell Based Admin Features
	4.3.8 Django Admin interface
	Edit announcement and news
	Delete a user

	4.3.9 RabbitMQ Management
	4.3.10 Flower Management
	4.3.11 Storage analytics
	The interface
	The background task

	4.3.12 Homepage counters
	4.3.13 User Quota management
	Increase user quota

	4.3.14 Codabench Statistics
	Start codabench
	Bash into the django container and start a python console:
	For overall platform statistics
	For overall published competitions statistics

	4.4 Codabench Docker Architecture
	4.4.1 Django
	4.4.2 Caddy
	4.4.3 Postgres (Labeled DB in docker-compose)
	4.4.4 Compute Worker
	4.4.5 Site Worker
	4.4.6 Minio
	4.4.7 Create Buckets
	4.4.8 Builder
	4.4.9 Rabbit
	4.4.10 Flower
	4.4.11 Competition docker image

	4.5 Submission Docker Container Layout
	4.5.1 Site Worker
	4.5.2 Compute Worker
	4.5.3 Submission Container

	4.6 Backups - Automating Creation and Restoring
	4.6.1 Creating Backups
	Create
	Upload

	4.6.2 Scheduling Automatic Backups
	4.6.3 Restoring From Backup

	4.7 Submission Process Overview
	4.7.1 Overview:

	4.8 Robot Submissions
	4.8.1 Pre-requisite
	4.8.2 Getting started
	Upload a bundle
	Set the competition to allow robot submissions
	Set yourself to Is bot
	Change CODALAB_URL address
	Choose the competition
	Making submission
	View submission details
	Finally

	4.8.3 Using the Scripts:
	Setup:
	get_competition_details.py:
	example_submission.py:
	get_submission_details.py
	rerun_submission.py
	Running the script

	4.9 Running Tests
	4.9.1 CircleCI
	4.9.2 Example competitions
	v2 test data
	v1.5 legacy test data
	Other Codalab Competition examples

	4.10 Automation
	4.10.1 What and Why
	4.10.2 Virtualenv
	Virtualenv
	Pyenv

	4.10.3 Requirements
	4.10.4 Automate competition creation

	4.11 Manual Validation
	4.12 Validation and deplyement of pull requests
	4.12.1 1. Local testing and validation of the changes
	Setup
	Testing
	Merging

	4.12.2 Update the test server
	Log into the server
	Pull the last change
	Restart Django
	Database migration
	Collect static files
	Final testing

	4.12.3 Merge develop into master
	4.12.4 Update the production server
	4.12.5 Creating a Release
	4.12.6 TODO

	4.13 Upgrading Codabench
	4.13.1 Index
	Upgrade Codabench
	Manual interventions

	4.13.2 Upgrade RabbitMQ (version < 1.0.0)
	Backup RabbitMQ settings
	Stop and remove RabbitMQ's container and data
	Switch to the latest RabbitMQ version
	Restore the backup settings
	Verify that your submission can be processed.

	4.13.3 Create new logos for each competitions (version < 1.4.1)
	4.13.4 Worker docker image manual update (version < 1.3.1)
	4.13.5 Add line in .env file for default worker queue duration (version < 1.7.0)
	4.13.6 Uncomment a line in your .env file (version < 1.8.0)
	4.13.7 Rebuilding all docker images (version < 1.9.2)
	4.13.8 Move the latest storage_inconsistency files from the logs folder to var/logs (version < 1.12.0)
	4.13.9 Submissions and Participants count (version < 1.14.0)
	1. Re-build containers
	2. Migration
	3. Update counts for all competitions
	4. Feature some competitions in home page

	4.13.10 Homepage Counters (version < 1.15.0)
	4.13.11 User Removal (version < 1.17.0)
	4.13.12 Database size fix (version < 1.18.0)
	1. Django migration (1774, 1752)
	2. Reset User Quota from Bytes to GB (1749)
	3. Important for file sizes cleanup (1752)

	5. Newsletters Archive
	5.1 2024
	5.1.1 CodaLab in 2024
	A Year of Breakthroughs and New Horizons with Codabench

	5.1.2 Unprecedented engagement
	5.1.3 Introducing Codabench
	5.1.4 Spotlight on competitions
	5.1.5 What about the future?
	5.1.6 Community
	5.1.7 Last words

	6. How you can contribue
	6.1 Index
	6.2 Contributing
	6.2.1 Being a Codabench user
	6.2.2 Setting up a local instance of Codabench
	Using your local instance

	6.2.3 Setting up an autonomous Compute Worker on a machine

	7. FAQ
	7.1 General questions
	7.1.1 What is Codabench for?
	7.1.2 Can CodaLab competitions be privately hosted?
	7.1.3 How to change my username?
	7.1.4 How to make a task public or use public tasks from other users?
	7.1.5 How to delete my account?

	7.2 Technical questions
	7.2.1 Server Setup Issues
	7.2.2 A library is missing in the docker environment. What do to?
	How does Codabench use dockers?
	For participants
	For organizers

	7.2.3 Emails are not showing up in my inbox for registration
	7.2.4 Robots and automated submissions?

	8. Contact Us

